Observations of ocean-terminating outlet glaciers in Greenland and West Antarctica indicate that their contribution to sea level is accelerating as a result of increased velocity, thinning and retreat. Thinning has also been reported along the margin of the much larger East Antarctic ice sheet, but whether glaciers are advancing or retreating there is largely unknown, and there has been no attempt to place such changes in the context of localized mass loss or climatic or oceanic forcing. Here we present multidecadal trends in the terminus position of 175 ocean-terminating outlet glaciers along 5,400 kilometres of the margin of the East Antarctic ice sheet, and reveal widespread and synchronous changes. Despite large fluctuations between glaciers--linked to their size--three epochal patterns emerged: 63 per cent of glaciers retreated from 1974 to 1990, 72 per cent advanced from 1990 to 2000, and 58 per cent advanced from 2000 to 2010. These trends were most pronounced along the warmer western South Pacific coast, whereas glaciers along the cooler Ross Sea coast experienced no significant changes. We find that glacier change along the Pacific coast is consistent with a rapid and coherent response to air temperature and sea-ice trends, linked through the dominant mode of atmospheric variability (the Southern Annular Mode). We conclude that parts of the world's largest ice sheet may be more vulnerable to external forcing than recognized previously.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature12382 | DOI Listing |
Sci Total Environ
January 2025
Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland; dendrolab.ch, Department of Earth Sciences, University of Geneva, Geneva, Switzerland; Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Switzerland.
Over recent decades, global warming has led to sustained glacier mass reduction and the formation of glacier lakes dammed by potentially unstable moraines. When such dams break, devastating Glacial Lake Outburst Floods (GLOFs) can occur in high mountain environments with catastrophic effects on populations and infrastructure. To understand the occurrence of GLOFs in space and time, build frequency-magnitude relationships for disaster risk reduction or identify regional links between GLOF frequency and climate warming, comprehensive databases are critically needed.
View Article and Find Full Text PDFNat Commun
December 2024
Norwegian Polar Institute, Tromsø, Norway.
Sci Rep
November 2024
Renard Center of Marine Geology, Department of Geology, Ghent University, Gent, Belgium.
Two-thirds of all glaciers worldwide are projected to disappear by 2100 CE. Large uncertainties however remain in maritime settings, where some glaciers have recently gained mass in response to increased snowfall. One of these regions is southern Patagonia, where increased precipitation since the 1980s seems to have attenuated glacier retreat.
View Article and Find Full Text PDFJ Glaciol
October 2023
Department of Geography and Planning, University of Liverpool, Liverpool L69 7ZT, UK.
Mass loss from iceberg calving at marine-terminating glaciers is one of the largest and most poorly constrained contributors to sea-level rise. However, our understanding of the processes controlling ice fracturing and crevasse evolution is incomplete. Here, we use Gabor filter banks to automatically map crevasse density and orientation through time on a ~150 km terminus region of Narsap Sermia, an outlet glacier of the southwest Greenland ice sheet.
View Article and Find Full Text PDFSci Rep
July 2024
Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.
Subglacial discharge from marine-terminating glaciers in Greenland injects large volumes of freshwater and suspended sediment into adjacent fjord environments. Although the discharge itself is nutrient poor, the formation of meltwater plumes can enhance marine biological production by stimulating upwelling of nutrient-rich fjord water. Despite the importance of meltwater discharge to marine ecosystems, little is known of the quantitative impact of discharge processes on phytoplankton growth, including the effects of local plumes, fjord-wide stirring and mixing, and suspended sediments on net primary production (NPP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!