Passive elastic mechanism to mimic fish-muscle action in anguilliform swimming.

J R Soc Interface

Physique et Mécanique des Milieux Hetérogènes (PMMH), CNRS UMR 7636, ESPCI ParisTech, UPMC (Paris 6), Université Paris Diderot (Paris 7), 10 rue Vauquelin, 75231 Paris, Cedex 5, France.

Published: November 2013

Swimmers in nature use body undulations to generate propulsive and manoeuvring forces. The anguilliform kinematics is driven by muscular actions all along the body, involving a complex temporal and spatial coordination of all the local actuations. Such swimming kinematics can be reproduced artificially, in a simpler way, by using the elasticity of the body passively. Here, we present experiments on self-propelled elastic swimmers at a free surface in the inertial regime. By addressing the fluid-structure interaction problem of anguilliform swimming, we show that our artificial swimmers are well described by coupling a beam theory with the potential flow model of Lighthill. In particular, we show that the propagative nature of the elastic wave producing the propulsive force is strongly dependent on the dissipation of energy along the body of the swimmer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785839PMC
http://dx.doi.org/10.1098/rsif.2013.0667DOI Listing

Publication Analysis

Top Keywords

anguilliform swimming
8
passive elastic
4
elastic mechanism
4
mechanism mimic
4
mimic fish-muscle
4
fish-muscle action
4
action anguilliform
4
swimming swimmers
4
swimmers nature
4
body
4

Similar Publications

Backward swimming in elongated-bodied abyssal demersal fishes: Synaphobranchidae, Macrouridae, and Ophidiidae.

J Fish Biol

January 2025

Minderoo-UWA Deep-Sea Research Centre, School of Biological Sciences and Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia.

The deep-sea demersal fish fauna is characterized by a prevalence of elongated-body forms with long tapering tails. Using baited camera landers at depths of 4500-6300 m in the Pacific Ocean, we observed multiple instances of backward swimming using reverse undulation of the slender body in four species: the cutthroat eel Ilyophis robinsae, abyssal grenadier Coryphaenoides yaquinae, and cusk-eels Bassozetus sp. and Barathrites iris.

View Article and Find Full Text PDF

The goal of this article is to identify and understand the fundamental role of spatial symmetries in the emergence of undulatory swimming using an anguilliform robot. Here, the local torque at the joints of the robot is controlled by a chain of oscillators forming a central pattern generator (CPG). By implementing a symmetric CPG with respect to the transverse plane, motor activation waves are inhibited, preventing the emergence of undulatory swimming and resulting in an oscillatory gait.

View Article and Find Full Text PDF

Same calls, different meanings: Acoustic communication of Holocentridae.

PLoS One

November 2024

Faculté des Sciences, Laboratoire de Morphologie Fonctionnelle et Evolutive, Universiteé de Lieège, Lieège, Belgium.

The literature on sound production behaviours in fish in the wild is quite sparse. In several taxa, associations between different sound types and given behaviours have been reported. In the Holocentridae, past nomenclature of the different sound types (knocks, growls, grunts, staccatos and thumps) has been confusing because it relies on the use of several terms that are not always based on fine descriptions.

View Article and Find Full Text PDF

Although the deep oceans represent Earth's largest habitat, the challenges of studying deep-sea organisms in situ have limited our understanding of adaptation, ecology, and behaviour in these important ecosystems. One fundamental trait of fishes that remains largely unexplored in the deep ocean is swimming, a vital process for movement, migration, and dispersal in marine habitats. Deep-sea conditions such as temperature, pressure, and food availability could each impact the speed and efficiency of swimming in fishes.

View Article and Find Full Text PDF

Variability within species is key for adaptability and biological evolution. To understand individualities in the context of animal movement, we focused on one of the most remarkable migrations-the journey of the endangered European eel from their birthplace in the Sargasso Sea to freshwater environments. Laboratory observations unveiled a continuum of diverse phenotypes of migrating eels: Some displayed a heightened tendency to swim against a constant water flow, while others a greater propensity to climb obstacles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!