The mechanisms by which oncolytic vaccinia virus induces tumor cell death are poorly understood. We have evaluated cell death pathways following infection of ovarian cancer cells with both wild-type and thymidine kinase-deleted (dTK) Lister strain vaccinia. We show that death does not rely upon classical apoptosis despite the appearances of some limited apoptotic features, including phosphatidylserine externalization and appearance of sub-G1 DNA populations. Vaccinia infection induces marked lipidation of LC3 proteins, but there is no general activation of the autophagic process and cell death does not rely upon autophagy induction. We show that vaccinia induces necrotic morphology on transmission electron microscopy, accompanied by marked by reductions in intracellular adenosine triphosphate, altered mitochondrial metabolism, and release of high mobility group box 1 (HMGB1) protein. This necrotic cell death appears regulated, as infection induces formation of a receptor interacting protein (RIP1)/caspase-8 complex. In addition, pharmacological inhibition of both RIP1 and substrates downstream of RIP1, including MLKL, significantly attenuate cell death. Blockade of TNF-α, however, does not alter virus efficacy, suggesting that necrosis does not result from autocrine cytokine release. Overall, these results show that, in ovarian cancer cells, vaccinia virus causes necrotic cell death that is mediated through a programmed series of events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3831043 | PMC |
http://dx.doi.org/10.1038/mt.2013.195 | DOI Listing |
JAMA Dermatol
January 2025
Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands.
Background: Interest in noninvasive treatment of basal cell carcinoma (BCC) has been increasing. For superficial BCC, it has been demonstrated that imiquimod cream, 5%, has high long-term efficacy, but for nodular BCC (nBCC), long-term evidence is sparse.
Objectives: To evaluate whether superficial curettage (SC) followed by imiquimod cream, 5%, is noninferior to surgical excision (SE) in nBCC after 5 years of treatment.
Bull Math Biol
January 2025
Department of Mathematics, University of Manitoba, 340 UMSU University Centre, Winnipeg, MB, R3T 2N2, Canada.
The immune checkpoint inhibitor, anti-programmed death protein-1 (anti-PD-1), enhances adaptive immunity to kill tumor cells, and the oncolytic virus (OV) triggers innate immunity to clear the infected tumor cells. We create a mathematical model to investigate how the interaction between adaptive and innate immunities under OV and anti-PD-1 affects tumor reduction. For different immunity strength, we create the corresponding virtual baseline patients and cohort patients to decipher the major factors determining the treatment outcome.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Anesthesiology and Reanimation, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
Background: Acute systemic inflammation affects many organs and it occurs in a wide range of conditions such as acute lung injury (ALI). Inflammation-triggered oxidative pathways together with the caspase activation seen in ALI, result in apoptosis. Dapagliflozin (DPG) is an agent that is known to have oxidative stress-reducing and anti-inflammatory effects in many tissues.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!