AI Article Synopsis

  • MicroRNAs are known to control over 60% of protein-coding genes by inhibiting or degrading their mRNAs through AGO2 complexes in the cytoplasm.
  • Recent research highlights that microRNA-9 (miR-9) specifically regulates the long non-coding RNA MALAT-1, which is significant and widely conserved.
  • This study uncovers a new direct regulation between microRNAs and long non-coding RNAs, enhancing our understanding of microRNA roles beyond just protein coding.

Article Abstract

microRNAs regulate the expression of over 60% of protein coding genes by targeting their mRNAs to AGO2-containing complexes in the cytoplasm and promoting their translational inhibition and/or degradation. There is little evidence so far for microRNA-mediated regulation of other classes of non-coding RNAs. Here we report that microRNA-9 (miR-9) regulates the expression of the Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT-1), one of the most abundant and conserved long non-coding RNAs. Intriguingly, we find that miR-9 targets AGO2-mediated regulation of MALAT1 in the nucleus. Our findings reveal a novel direct regulatory link between two important classes of non-coding RNAs, miRs and lncRNAs, and advance our understanding of microRNA functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3756333PMC
http://dx.doi.org/10.1038/srep02535DOI Listing

Publication Analysis

Top Keywords

non-coding rnas
12
long non-coding
8
classes non-coding
8
microrna-9 targets
4
targets long
4
non-coding
4
non-coding rna
4
rna malat1
4
malat1 degradation
4
degradation nucleus
4

Similar Publications

The current study was deployed to evaluate the role of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and miR-155, along with the inflammatory markers, TNFα and IL-6, and the adhesion molecule, cluster of differentiation 106 (CD106), in Behçet's disease (BD) pathogenesis. The study also assessed MALAT1/miR-155 as promising diagnostic and prognostic biomarkers for BD. The current retrospective case-control study included 74 Egyptian BD patients and 50 age and sex-matched controls.

View Article and Find Full Text PDF

Dysregulation of long non-coding RNAs (lncRNAs) is implicated in the pathophysiology of ischemic stroke (IS). However, the molecular mechanism of the lncRNA SERPINB9P1 in IS remains unclear. Our study aimed to explore the role and molecular mechanism of the lncRNA SERPINB9P1 in IS.

View Article and Find Full Text PDF

Cancer is a complex genetic disorder characterized by abnormalities in both coding and regulatory non-coding RNAs. microRNAs (miRNAs) are key regulatory non-coding RNAs that modulate cancer development, functioning as both tumor suppressors and oncogenes. miRNAs play critical roles in cancer progression, influencing key processes such as initiation, promotion, and metastasis.

View Article and Find Full Text PDF

Chronic Gastrointestinal Disorders and miRNA-Associated Disease: An Up-to-Date.

Int J Mol Sci

January 2025

Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy.

Chronic gastrointestinal disorders such as inflammatory bowel diseases (IBDs) and irritable bowel syndrome (IBS) impose significant health burdens globally. IBDs, encompassing Crohn's disease and ulcerative colitis, are multifactorial disorders characterized by chronic inflammation of the gastrointestinal tract. On the other hand, IBS is one of the principal gastrointestinal tract functional disorders and is characterized by abdominal pain and altered bowel habits.

View Article and Find Full Text PDF

Gastric cancer (GC) remains the most common malignant tumor of the gastrointestinal tract and one of the leading causes of cancer-related deaths worldwide. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), are involved in the pathogenesis and progression of GC and, therefore, may be potential diagnostic and prognostic biomarkers. Our work was aimed at investigating the predicted regulation of by miR-129-5p and miR-3613-3p and the clinical value of their aberrant expression in GC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!