The Raf family of protein kinases are key signaling intermediates, acting as a central link between the membrane-bound Ras GTPases and the downstream kinases MEK and ERK. Raf kinase regulation is well-known for its complexity but only recently has it been realized that many of the mechanisms involved in Raf regulation also modulate Raf dimerization, now acknowledged to be a required step for Raf signaling in multiple cellular contexts. Recent studies have shown that Raf dimerization is necessary for normal Ras-dependent Raf kinase activation and contributes to the pathogenic function of disease-associated mutant Raf proteins with all but high intrinsic kinase activity. Raf dimerization has also been found to alter therapeutic responses and disease progression in patients treated with ATP-competitive Raf inhibitors as well as certain other kinase-targeted drugs. This demonstration of clinical significance has stimulated the recent development of biosensor assays that can monitor inhibitor-induced Raf dimerization as well as studies demonstrating the therapeutic potential of blocking Raf dimerization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976976 | PMC |
http://dx.doi.org/10.4161/sgtp.26117 | DOI Listing |
Biosensors (Basel)
November 2024
Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
Recent advances in drug discovery have established biosensors as indispensable tools, particularly valued for their precision, sensitivity, and real-time monitoring capabilities. The review begins with a brief overview of cancer drug discovery, underscoring the pivotal role of biosensors in advancing cancer research. Various types of biosensors employed in cancer drug discovery are then explored, with particular emphasis on fluorescence- and bioluminescence-based technologies such as FRET, TR-FRET, BRET, NanoBRET, and NanoBiT.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Team Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium.
Background: There are no active treatment options for patients with progressive melanoma brain metastases (MBM) failing immune checkpoint blockade (ICB) and BRAF/MEK inhibitors (BRAF/MEKi). Regorafenib (REGO), an oral multi-kinase inhibitor (incl. RAF-dimer inhibition), can overcome adaptive resistance to BRAF/MEKi in preclinical models.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh. Electronic address:
Trends Biochem Sci
November 2024
NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA. Electronic address:
Genetics
November 2024
Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201USA.
Raf protein kinases act as Ras-GTP sensing components of the ERK signal transduction pathway in animal cells, influencing cell proliferation, differentiation, and survival. In humans, somatic and germline mutations in the genes BRAF and RAF1 are associated with malignancies and developmental disorders. Recent studies shed light on the structure of activated Raf, a heterotetramer consisting of Raf and 14-3-3 dimers, and raised the possibility that a Raf C-terminal distal tail segment (DTS) regulates activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!