Culture Conditions for the Mycelial Growth of Ganoderma applanatum.

Mycobiology

Department of Agricultural Environment, Gyeongbuk Agricultural Technology Administration, Daegu 702-320, Korea.

Published: June 2009

AI Article Synopsis

  • Ganoderma applanatum is a well-known medicinal mushroom with various active compounds, and this study focused on optimizing its mycelial culture conditions.
  • PDA, YMA, and MCM media were identified as effective for mycelial growth, with the ideal temperature range being 25 to 30°C.
  • The best carbon and nitrogen sources for growth were mannose and dextrin, respectively, with optimal growth conditions also requiring specific vitamins, organic acids, and mineral salts.

Article Abstract

Ganoderma applanatum is one of the most popular medicinal mushrooms due to the various biologically active components it produces. This study was conducted to obtain basic information regarding the mycelial culture conditions of Ganoderma applanatum. Based on the colony diameter and mycelial density, PDA, YMA and MCM media were suitable for the mycelial growth of the mushroom. The optimum temperature for mycelial growth was found to be 25~30℃. The optimum carbon and nitrogen sources were mannose and dextrin, respectively, and the optimum C/N ratio was 2 to 10 when 2% glucose was used. Other minor components required for the optimal growth included thiamine-HCl and biotin as vitamins, succinic acid and lactic acid as organic acids, and MgSO4·7H2O, KH2PO4 and NaCl as mineral salts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749412PMC
http://dx.doi.org/10.4489/MYCO.2009.37.2.094DOI Listing

Publication Analysis

Top Keywords

mycelial growth
12
ganoderma applanatum
12
culture conditions
8
mycelial
5
conditions mycelial
4
growth
4
growth ganoderma
4
applanatum ganoderma
4
applanatum popular
4
popular medicinal
4

Similar Publications

Isolation and identification of the causal agent of gummy stem blight disease in Cucumis sativus caused by a bacterial pathogen in China.

Sci Rep

January 2025

College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China.

Recently, a new bacterial disease was detected on cucumber stalks. In order to study the pathogenesis of this disease, the pathogenic bacteria were isolated and identified on the basis of morphological and molecular characteristics, and further analyzed for pathogenicity and antagonistic evaluation. Pathogenicity analysis showed that HlJ-3 caused melting decay and cracking in cucumber stems, and the strain reisolated from re-infected cucumber stalks was morphologically identical to HlJ-3 colonies, which is consistent with the Koch's postulates.

View Article and Find Full Text PDF

First Report of Causing Root Rot of Incense Cedar in Tennessee and the United States.

Plant Dis

January 2025

Tennessee State University, Otis Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, Tennessee, United States, 37110;

Incense cedar [ (Torr.) Florin] is a coniferous evergreen tree, indigenous to western North America, that is being evaluated in Tennessee for its adaptability to eastern U.S.

View Article and Find Full Text PDF

First Report of Charcoal Rot Caused by of Sweet Potato in Southern China.

Plant Dis

January 2025

Guangdong Academy of Agricultural Sciences, Crop Research Institute, Wushan Road, Tianhe District, guangzhou, China, 510640;

Sweet potato ( (L.) Lam) is a major food crop that is cultivated in southern China (Huang et al. 2020).

View Article and Find Full Text PDF
Article Synopsis
  • Lithium metal is a promising anode material for high-energy batteries but faces challenges like dendrite growth and volume expansion during use.
  • A new biochar derived from antibiotic mycelial residues and soybean cellulose acts as a supportive structure for lithium metal, enhancing uniform nucleation and reducing dendrite issues.
  • The biochar electrode shows impressive cycling stability and capacity retention in both coin and pouch cell configurations, highlighting its potential for improving lithium metal anodes and addressing biological waste.
View Article and Find Full Text PDF

Trans-nuclei CRISPR/Cas9: safe approach for genome editing in the edible mushroom excluding foreign DNA sequences.

Appl Microbiol Biotechnol

December 2024

Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kitashirakawaoiwakecho, Kyoto, 606-8502, Japan.

Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-assisted genome editing has been applied to several major edible agaricomycetes, enabling efficient gene targeting. This method is promising for rapid and efficient breeding to isolate high-value cultivars and overcome cultivation challenges. However, the integration of foreign DNA fragments during this process raises concerns regarding genetically modified organisms (GMOs) and their regulatory restrictions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!