Detecting drug-target interactions in real-time is a powerful approach for drug discovery and analytics. We show here for the first time the ultra fast electrical real-time detection and quantification of antibiotics using a novel biohybrid nanosensor. The biomolecular sensing is performed on ultralong (mm range) high aspect ratio nanowall (50 nm width) surfaces functionalized with operator DNA tetO which is specifically bound by the sensor protein TetR. This sensor protein is released from the operator DNA in a dose dependent manner by exposing the device functionalized with this bound DNA-protein complex to tetracycline antibiotics. As a result, the electrical conductance is accordingly modulated by these surface net charge changes. The switching mechanism of sensor proteins attached at the functionalized surfaces and releasing them again by antibiotics is demonstrated. With the here presented device the detection limit is below the limits of prevailing detection methods. Moreover, the study is extended to detect antibiotic residues in spiked organic milk from cows far below the maximum residual level of the European Union. In spiked milk samples a detection limit for tetracycline concentrations in the 100 fM level was achieved. The nanowall devices are fabricated by atomic layer deposition-based spacer lithography on full wafer scale which is a simple approach capable for mass production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3lc50694k | DOI Listing |
Viruses
December 2024
Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia.
The global burden of respiratory syncytial virus (RSV) and severe associated disease is prodigious. RSV-specific vaccines have been launched recently but there is no antiviral medicine commercially available. RSV polymerase (L) protein is one of the promising antiviral targets, along with fusion and nucleocapsid proteins.
View Article and Find Full Text PDFViruses
November 2024
Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N6, Canada.
Despite all the progress in treating SARS-CoV-2, escape mutants to current therapies remain a constant concern. Promising alternative treatments for current and future coronaviruses are those that limit escape mutants by inhibiting multiple pathogenic targets, analogous to the current strategies for treating HCV and HIV. With increasing popularity and ease of manufacturing of RNA technologies for vaccines and drugs, therapeutic microRNAs represent a promising option.
View Article and Find Full Text PDFPharmaceutics
December 2024
Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
In general, antimicrobial preservatives are essential components of multidose pharmaceutical formulations to prevent microbial growth and contamination, many of which contain lipophilic and poorly water-soluble drugs in need of solubilizing excipients, such as cyclodextrins (CDs). However, CDs frequently reduce or even abolish the antimicrobial activities of commonly used pharmaceutical preservatives. The degree of inactivation depends on the CD complexation of the preservatives, which in turn depends on their chemical structure and physiochemical properties.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
Nanodrug delivery systems have revolutionized tumor therapy like never before. By overcoming the complexity of the tumor microenvironment (TME) and bypassing drug resistance mechanisms, nanotechnology has shown great potential to improve drug efficacy and reduce toxic side effects. This review examines the impact of the TME on drug resistance and recent advances in nanomedicine delivery systems to overcome this challenge.
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy.
Lipid nanoparticles (LNPs) have shown promise as a delivery system for nucleic acid-based therapeutics, including DNA, siRNA, and mRNA vaccines. The immune system plays a critical role in the response to these nanocarriers, with innate immune cells initiating an early response and adaptive immune cells mediating a more specific reaction, sometimes leading to potential adverse effects. Recent studies have shown that the innate immune response to LNPs is mediated by Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs), which recognize the lipid components of the nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!