We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3755294PMC
http://dx.doi.org/10.1038/srep02521DOI Listing

Publication Analysis

Top Keywords

tactile feedback
8
feedback display
8
spatial temporal
8
temporal resolutions
8
display spatial
4
resolutions report
4
report electronic
4
electronic recording
4
recording touch
4
touch contact
4

Similar Publications

A Proximity and Tactile Sensor with Visual Multiresponse.

ACS Appl Mater Interfaces

January 2025

College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

Proximity and tactile multiresponse sensing electronic skin enriches the perception dimension, which is of great significance in promoting the intelligence of electronic skin. However, achieving real-time visualization in sensors such as proximity and tactile feedback remains a challenge. A proximity and tactile sensor with visual function is designed, which can realize optical early warning and electrical recognition when the object is near, and optical display and electrical output when the object is in contact.

View Article and Find Full Text PDF

Implications of Hemispheric Shift of Sensory Feedback during Post-stroke Motor Control on Personalized Stroke Rehabilitation.

Converg Clin Eng Res Neurorehabilit V (2024)

December 2024

University of Illinois Urbana-Champaign, Urbana, IL, USA; Carle Foundation Hospital, Urbana, IL, USA; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA.

Sensory feedback is crucial for motor control as it establishes the internal representation of motion. This study investigates changes in sensory feedback in hemiparetic stroke by analyzing the laterality index (LI) of somatosensory evoked potentials (SEPs) during movements of the paretic arm, focusing on a shift from the lesioned to the contralesional hemisphere. Three chronic stroke participants performed isometric lifts of their paretic arms at two different levels of their maximum voluntary contraction while receiving tactile finger stimulation.

View Article and Find Full Text PDF

Ferroelectric/Electric-Double-Layer-Modulated Synaptic Thin Film Transistors toward an Artificial Tactile Perception System.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China.

Tactile sensation and recognition in the human brain are indispensable for interaction between the human body and the surrounding environment. It is quite significant for intelligent robots to simulate human perception and decision-making functions in a more human-like way to perform complex tasks. A combination of tactile piezoelectric sensors with neuromorphic transistors provides an alternative way to achieve perception and cognition functions for intelligent robots in human-machine interaction scenarios.

View Article and Find Full Text PDF

Background: The pelvis is one of the most common areas for metastatic bone disease. We recently described the use of a minimally invasive percutaneous screw fixation of metastatic non-periacetabular pelvic lesions, with excellent results.

Description: The procedure can be completed in a standard operating theater without the need for special instruments.

View Article and Find Full Text PDF

Haptic Technology: Exploring Its Underexplored Clinical Applications-A Systematic Review.

Biomedicines

December 2024

Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.

Background/objectives: Haptic technology has transformed interactions between humans and both tangible and virtual environments. Despite its widespread adoption across various industries, the potential therapeutic applications of this technology have yet to be fully explored.

Methods: A systematic review of randomized controlled trials (RCTs) and randomized crossover trials was conducted, utilizing databases such as PubMed, Embase, Cochrane Library, and Web of Science.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!