Moderate hypothermia inhibits brain inflammation and attenuates stroke-induced immunodepression in rats.

CNS Neurosci Ther

Department of Neurosurgery, Stanford Stroke Center and Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford University, Stanford, CA, USA; Department of Basic Medicine, Hangzhou Normal University, Hangzhou, China.

Published: January 2014

Aims: Stroke causes both brain inflammation and immunodepression. Mild-to-moderate hypothermia is known to attenuate brain inflammation, but its role in stroke-induced immunodepression (SIID) of the peripheral immune system remains unknown. This study investigated the effects in rats of moderate intra-ischemic hypothermia on SIID and brain inflammation.

Methods: Stroke was induced in rats by permanent distal middle cerebral artery occlusion combined with transient bilateral common carotid artery occlusion, while body temperature was reduced to 30°C. Real-time PCR, flow cytometry, in vitro T-cell proliferation assays, in vivo delayed-type hypersensitivity (DTH) reaction and confocal microscopy were used to study SIID and brain inflammation.

Results: Brief intra-ischemic hypothermia helped maintain certain leukocytes in the peripheral blood and spleen and enhanced T-cell proliferation in vitro and delayed-type hypersensitivity in vivo, suggesting that hypothermia reduces SIID. In contrast, in the brain, brief intra-Ischemic hypothermia inhibited mRNA expression of anti-inflammatory cytokine IL-10 and proinflammatory mediators INF-γ, TNF-α, IL-2, IL-1β and MIP-2. Brief intra-Ischemic hypothermia also attenuated the infiltration of lymphocytes, neutrophils (MPO(+) cells) and macrophages (CD68(+) cells) into the ischemic brain, suggesting that hypothermia inhibited brain inflammation.

Conclusions: Brief intra-ischemic hypothermia attenuated SIID and protected against acute brain inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867545PMC
http://dx.doi.org/10.1111/cns.12160DOI Listing

Publication Analysis

Top Keywords

intra-ischemic hypothermia
20
brain inflammation
16
brain
9
stroke-induced immunodepression
8
hypothermia
8
siid brain
8
artery occlusion
8
t-cell proliferation
8
delayed-type hypersensitivity
8
suggesting hypothermia
8

Similar Publications

Therapeutic hypothermia (TH) provides cardioprotection from ischemia/reperfusion (I/R) injury. However, it remains unknown how TH regulates metabolic recovery. We tested the hypothesis that TH modulates PTEN, Akt, and ERK1/2, and improves metabolic recovery through mitigation of fatty acid oxidation and taurine release.

View Article and Find Full Text PDF

Moderate hypothermia inhibits brain inflammation and attenuates stroke-induced immunodepression in rats.

CNS Neurosci Ther

January 2014

Department of Neurosurgery, Stanford Stroke Center and Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford University, Stanford, CA, USA; Department of Basic Medicine, Hangzhou Normal University, Hangzhou, China.

Aims: Stroke causes both brain inflammation and immunodepression. Mild-to-moderate hypothermia is known to attenuate brain inflammation, but its role in stroke-induced immunodepression (SIID) of the peripheral immune system remains unknown. This study investigated the effects in rats of moderate intra-ischemic hypothermia on SIID and brain inflammation.

View Article and Find Full Text PDF

Objective: To evaluate the neuroprotection of mild hypothermia, applied in different moments, in temporary focal cerebral ischemia in rats.

Methods: Rats was divided into Control (C), Sham (S), Ischemic-control(IC), Pre-ischemic Hypothermia (IH1), Intra-ischemic Hypothermia (IH2), and Post-ischemic Hypothermia (IH3) groups. Morphometry was performed using the KS400 software (Carl Zeiss®) in coronal sections stained by Luxol Fast Blue.

View Article and Find Full Text PDF

Protracted Tyrosine Phosphorylation of the Glutamate Receptor Subunit NR2 in the Rat Hippocampus Following Transient Cerebral Ischemia is Prevented by Intra-Ischemic Hypothermia.

Ther Hypothermia Temp Manag

November 2011

Laboratory for Experimental Brain Research, The Wallenberg Neuroscience Center , Lund University Hospital, Lund, Sweden . ; Shock, Trauma and Anesthesiology Research Center, Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland.

Changes in the dynamic interactions of macromolecules in cell membranes appear to underlie the robust neuroprotective effect of hypothermia against selective neuronal degeneration in the CA1 region of the rat hippocampus after transient cerebral ischemia, but the detailed mechanisms are still elusive. Using the two-vessel occlusion model of transient normothermic cerebral ischemia of 15 min duration, we investigated the tyrosine phosphorylation of synaptic proteins in general and that of the NMDA receptor subunits in particular, at different times of recirculation. Specifically, the effect of intra-ischemic hypothermia (33°C), which provides neuroprotection to the CA1 region of the hippocampus, was studied.

View Article and Find Full Text PDF

Global profiling of influence of intra-ischemic brain temperature on gene expression in rat brain.

Brain Res Rev

June 2008

Division of Genomic Epidemiology and Clinical Trials, Advanced Medical Research Center, Nihon University School of Medicine, Oyaguchi-Kami Machi, Itabashi-ku, Tokyo 173-8610, Japan.

Mild to moderate differences in brain temperature are known to greatly affect the outcome of cerebral ischemia. The impact of brain temperature on ischemic disorders has been mainly evaluated through pathological analysis. However, no comprehensive analyses have been conducted at the gene expression level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!