The effect of cationic micelles of cetyltrimethylammonium bromide (CTAB) on the interaction of gallium (III) with 4-(2-pyridylazo) resorcinol (PAR) under varying conditions has been studied spectrophotometrically. At pH 6.0, CTAB (0.05% w/v) markedly enhanced the absorption intensity of gallium (III)-PAR complex. Furthermore, the introduction of CTAB provided unique selectivity for the ligand exchange of Ga(III)-PAR by calf thymus dsDNA over calf thymus ssDNA. This phenomenon offers a novel spectrophotometric sensing strategy for direct detection of dsDNA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2013.07.113DOI Listing

Publication Analysis

Top Keywords

calf thymus
12
ligand exchange
8
spectroscopic studies
4
studies micelle-enhanced
4
micelle-enhanced ligand
4
exchange gallium
4
gallium iii/4-2-pyridylazo
4
iii/4-2-pyridylazo resorcinol
4
resorcinol complex
4
complex calf
4

Similar Publications

This article presents a new and facile method for the synthesis of Schiff base compounds with a benzimidazole group using a low-cost and reusable calcium aluminate nanophosphorus catalyst (CaAlO). This approach avoids harmful solvents and reactants, supporting a more environmentally friendly synthesis process. The catalyst maintained its activity and heterogeneity over four cycles with minimal loss of efficiency.

View Article and Find Full Text PDF

Circulating histones have been identified as essential mediators that lead to hyperinflammation, platelet aggregation, coagulation cascade activation, endothelial cell injury, multiple organ dysfunction, and death in severe patients with sepsis, multiple trauma, COVID-19, acute liver failure, and pancreatitis. Clinical evidence suggests that plasma levels of circulating histones are positively associated with disease severity and survival in patients with such critical diseases. However, safe and efficient therapeutic strategies targeting circulating histones are lacking in current clinical practice.

View Article and Find Full Text PDF

In this study, we have designed and developed a cationic bolaform C12-(2,3-dihydroxy-N, N-dimethyl-N-(2-ureidoethyl)propan-1-aminium chloride)2 (C12(DDUPAC)2) that is derived from biocompatible molecules. The bolaform C12(DDUPAC)2 has hydroxyl (OH) functionality at both the cationic head groups. The impact of head group structure on the self-assembly and effectiveness of gene transfection and antimicrobial activity was investigated and compared with that of the hydrochloride salt C12-(N, N-dimethyl-N-(2-ureidoethan-1-aminium chloride)2 (C12(DUAC)2) of its precursor molecule.

View Article and Find Full Text PDF

Unraveling the mechanisms underlying the fluorescent probe detection of microcystin-LR and its binding with CT-DNA.

Int J Biol Macromol

January 2025

Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, PR China; Southwest United Graduate School, Kunming 650092, PR China. Electronic address:

Cyanobacteria blooms are concerning due to algal toxins like microcystin-leucine arginine (MC-LR). Despite progress in detecting MC-LR and understanding its toxic effects, including calf thymus DNA (CT-DNA) damage, the mechanisms for fluorescent probe detection of MC-LR and its binding to CT-DNA are poorly understood. In this study, we designed three fluorescent probes for MC-LR detection.

View Article and Find Full Text PDF

This work reports the synthesis of a copper metal complex with the nonsteroidal anti-inflammatory drug (NSAID) ibuprofen, and 2,2'-dipyridylamine employing microwave-assisted synthesis (MWAS). To the best of authors knowledge, this is the first study reporting a NSAID-based complex achieved through MWAS. The coordination compound was characterised by elemental analysis, Fourier transform infrared spectroscopy, thermogravimetry, and ultraviolet-visible spectrophotometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!