Tissue-engineered cartilage has historically been an attractive alternative treatment option for auricular reconstruction. However, the ability to reliably generate autologous auricular neocartilage in an immunocompetent preclinical model should first be established. The objectives of this study were to demonstrate engineered autologous auricular cartilage in the immunologically aggressive subcutaneous environment of an immunocompetent animal model, and to determine the impact of in vitro culture duration of chondrocyte-seeded constructs on the quality of neocartilage maturation in vivo. Auricular cartilage was harvested from eight adult sheep; chondrocytes were isolated, expanded in vitro, and seeded onto fibrous collagen scaffolds. Constructs were cultured in vitro for 2, 6, and 12 weeks, and then implanted autologously in sheep and in control nude mice for 6 and 12 weeks. Explanted tissue was stained with hematoxylin and eosin, safranin O, toluidine blue, collagen type II, and elastin. DNA and glycosaminoglycans (GAGs) were quantified. The quality of cartilage engineered in sheep decreased with prolonged in vitro culture time. Superior cartilage formation was demonstrated after 2 weeks of in vitro culture; the neocartilage quality improved with increased implantation time. In nude mice, neocartilage resembled native sheep auricular cartilage regardless of the in vitro culture length, with the exception of elastin expression. The DNA quantification was similar in all engineered and native cartilage (p>0.1). All cartilage engineered in sheep had significantly less GAG than native cartilage (p<0.02); significantly more GAG was observed with increased implantation time (p<0.02). In mice, the GAG content was similar to that of native cartilage and became significantly higher with increased in vitro or in vivo durations (p<0.02). Autologous auricular cartilage was successfully engineered in the subcutaneous environment of an ovine model using expanded chondrocytes seeded on a fibrous collagen scaffold after a 2-week in vitro culture period.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEA.2013.0150DOI Listing

Publication Analysis

Top Keywords

auricular cartilage
16
vitro culture
16
autologous auricular
12
cartilage
10
animal model
8
nude mice
8
cartilage engineered
8
engineered sheep
8
native cartilage
8
auricular
6

Similar Publications

Toward improved auricle reconstruction: The role of FDM 3D printing with PCL and TPU materials.

Biomater Adv

January 2025

Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Piazza Leonardo Da Vinci 32, Milan, Italy; Local Unit Politecnico di Milano, Milan, Italy. Electronic address:

Microtia, along with trauma, represents one of the main causes of external ear malformation. Different clinical techniques were developed for the reconstruction of the auricle, but they all have some drawbacks. This work is focused on the development of an innovative 3D porous scaffold, printed by Fused Deposition Modelling (FDM) and based on laser-scanned images of the healthy contralateral ear of the patient.

View Article and Find Full Text PDF

Outbreak of perichondritis associated with ear piercings and a contaminated water system.

Epidemiol Infect

January 2025

Health Protection Operations, South West, UK Health Security Agency, Bristol, UK.

In September 2023, the UK Health Security Agency's (UKHSA) South West Health Protection Team received notification of patients with perichondritis. All five cases had attended the same cosmetic piercing studio and a multi-disciplinary outbreak control investigation was subsequently initiated. An additional five cases attending the same studio were found.

View Article and Find Full Text PDF

How novel structures emerge during evolution has long fascinated biologists. A dramatic example is how the diminutive bones of the mammalian middle ear arose from ancestral fish jawbones. In contrast, the evolutionary origin of the outer ear, another mammalian innovation, remains a mystery, in part because it is supported by non-mineralized elastic cartilage rarely recovered in fossils.

View Article and Find Full Text PDF

Single-Cell RNA sequencing reveals mitochondrial dysfunction in microtia chondrocytes.

Sci Rep

January 2025

Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Microtia is a congenital malformation characterized by underdevelopment of the external ear. While chondrocyte dysfunction has been implicated in microtia, the specific cellular abnormalities remain poorly understood. This study aimed to investigate mitochondrial dysfunction in microtia chondrocytes using single-cell RNA sequencing.

View Article and Find Full Text PDF

Microtia profoundly affects patients' appearance and psychological well-being. Tissue engineering ear cartilage scaffolds have emerged as the most promising solution for ear reconstruction. However, constructing tissue engineering ear cartilage scaffolds requires multiple passaging of chondrocytes, resulting in their dedifferentiation and loss of their special phenotypes and functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!