In this paper, the content of all major carbohydrates and the spatial distribution of starch, arabinoxylan and β-glucan in developing wheat kernels (Triticum aestivum L. var. Homeros) from anthesis until maturity were studied. By combining information from microscopy and quantitative analysis, a comprehensive overview on the changes in storage and structural carbohydrates in developing grains was obtained. In the phase of cell division and expansion, grains were characterized by a rapid accumulation of water and high concentrations of the water-soluble carbohydrates fructan, sucrose, glucose and fructose. During the grain filling phase, starch, protein, β-glucan and arabinoxylan accumulated, while during grain maturation and desiccation, only a loss of moisture took place. The comprehensive approach of this study allowed finding correlations, which are discussed within the context of grain development. Particular attention was given to the transient presence of high fructan concentrations, which was associated with the most striking compositional changes during grain development.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf402796uDOI Listing

Publication Analysis

Top Keywords

storage structural
8
structural carbohydrates
8
carbohydrates developing
8
developing wheat
8
triticum aestivum
8
quantitative analysis
8
grain development
8
analysis storage
4
carbohydrates
4
wheat triticum
4

Similar Publications

In this paper, a new theoretical model of a partially coherent Laguerre-Gaussian (LG) beam carrying multiple off-axis vortex phases was established. The evolution properties of the focused intensity of the beam after passing through a thin lens were theoretically studied, and then the modulation effect of multiple off-axis vortex phases on the beam with multiring structured intensity was explored. The results indicate that the multiple off-axis vortex phases can reconstruct the multiring structured intensity within the LG beam, thus generating a structured intensity with multilobe and multiring patterns.

View Article and Find Full Text PDF

Light metal-based nanomaterials are widely used for energy storage due to their high energy density and surface-to-volume ratio. However, their high reactivity is paradoxically both the source of advantageous properties and a hurdle to the fabrication of stable nanostructures. Here, we demonstrate the formation of nanoporous Mg via chemical redox agent-driven dealloying, which ensures minimized surface passivation and results in fine nanostructures with <50 nm of interconnected metallic ligament despite the labile chemical properties of Mg.

View Article and Find Full Text PDF

Background: Peritoneal dialysis (PD) is an important modality of renal replacement therapy (RRT). Peritonitis and ultrafiltration failure are complications that have a long-term impact on PD patients. Besides touch contamination, procedural errors and clinical reasons of peritonitis, contaminants, and constituents of peritoneal dialysis fluids (PDFs) have been implicated in causing peritonitis and ultrafiltration failure.

View Article and Find Full Text PDF

Recently, lithium-sulfur batteries have captivated those in the energy storage industry due to the low cost and high theoretical capacity of the sulfur cathode (1675 mA h g). However, to enhance the practical usability of Li-S batteries, it is crucial to address issues such as the insulating nature of sulfur cathodes and the high solubility of lithium polysulfides (LiPS, LiS , 4 ≤ ≤ 8) that cause poor active sulfur utilization. Designing innovative sulfur hosts can effectively overcome sulfur bottlenecks and achieve stable Li-sulfur batteries.

View Article and Find Full Text PDF

Towards Solid-State Batteries Using a Calcium Hydridoborate Electrolyte.

Angew Chem Int Ed Engl

January 2025

Aarhus University, iNANO, Department of Chemistry, Langelandsgade 140, 8000, Aarhus C, DENMARK.

Solid-state batteries created from abundant elements, such as calcium, may pave the way for cheaper and safer electrical energy storage. Here we report a new type of solid calcium hydridoborate electrolyte, Ca(BH4)2·2NH2CH3, with a high ionic conductivity of σ(Ca2+) ~ 10-5 S cm-1 at T = 70 °C, which is assigned to a relatively open and flexible structure with apolar moieties and weak dihydrogen bonds that facilitate migration of Ca2+ ions in the solid state. The compound display a low electronic conductivity, providing an ionic transport number close to unity (tion = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!