Myosin light chain kinase is a Ca2+/calmodulin-dependent protein kinase which exhibits a very high degree of protein substrate specificity. The regulatory light chain of myosin is the only known physiological substrate of the enzyme. Based upon epitope mapping of monoclonal antibodies which inhibit kinase activity competitively with respect to the light chain substrate, residues 235-319 of the rabbit skeletal muscle kinase have been proposed to contain a light chain-binding site (Herring, B. P., Stull, J. T., and Gallagher, P. J. (1990) J. Biol. Chem. 265, 1724-1730). With the expression of a truncated kinase, we have further localized this putative binding site to residues 235-294. Mutation of acidic residues at positions 269 and 270 of the kinase resulted in a 10-fold increase in the Km value for the myosin light chain, with no significant change in the Vmax value. In contrast, altering a cluster of acidic amino acids at positions 261-263 had little effect on the Km value for the myosin light chain. These results suggest that residues 269 and 270 may be involved in protein-substrate binding. Interestingly, these residues, located amino-terminal of the homologous catalytic core (positions 302-539), are in a region which is highly conserved among myosin light chain kinases, but not other protein kinases. It is probable that the homologous catalytic core contains structural elements required for phosphotransferase activity. The catalytic domain of myosin light chain kinase would therefore include these conserved elements together with additional specific substrate-binding residues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836771PMC

Publication Analysis

Top Keywords

light chain
32
myosin light
28
chain kinase
12
light
10
acidic residues
8
myosin
8
light chain-binding
8
chain-binding site
8
skeletal muscle
8
chain
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!