Spt2/Sin1 is a DNA binding protein with HMG-like domains. It plays a role in chromatin modulations associated with transcription elongation in Saccharomyces cerevisiae. Spt2 maintains the nucleosome level in coding regions and is important for the inhibition of spurious transcription in yeast. In this work, we undertook a biochemical approach to identify Spt2-interacting partners. Interestingly, casein kinase 2 (CK2) interacts with Spt2 and phosphorylates it in vitro as well as in vivo on two small regions, region I (RI) (amino acids 226 to 230) and RII (amino acids 277 to 281), located in its essential C-terminal domain. Mutation of the phosphorylation sites in RI and RII to acidic residues, thereby mimicking CK2 phosphorylation, leads to the inhibition of Spt2 function in the repression of spurious transcription and to a loss of its recruitment to coding regions. Inversely, depleting cells of CK2 activity leads to an increased Spt2 association with genes. We further show that Spt2 physically interacts with the essential histone chaperone Spt6 and that this association is inhibited in vitro and in vivo by CK2-dependent phosphorylation. Taken together, our data suggest that CK2 regulates the function of Spt2 by modulating its interaction with chromatin and the histone chaperone Spt6.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3811886 | PMC |
http://dx.doi.org/10.1128/MCB.00525-13 | DOI Listing |
The eukaryotic genome is broadly transcribed by RNA polymerase II (RNAPII) to produce protein-coding messenger RNAs (mRNAs) and a repertoire of non-coding RNAs (ncRNAs). Whereas RNAPII is very processive during mRNA transcription, it terminates rapidly during synthesis of many ncRNAs, particularly those that arise opportunistically from accessible chromatin at gene promoters or enhancers. The divergent fates of mRNA versus ncRNA species raise many questions about how RNAPII and associated machineries discriminate functional from spurious transcription.
View Article and Find Full Text PDFSci Rep
January 2025
NASA Ames Research Center, Moffett Field, Mountain View, USA.
Spaceflight has several detrimental effects on human and rodent health. For example, liver dysfunction is a common phenotype observed in space-flown rodents, and this dysfunction is partially reflected in transcriptomic changes. Studies linking transcriptomics with liver dysfunction rely on tools which exploit correlation, but these tools make no attempt to disambiguate true correlations from spurious ones.
View Article and Find Full Text PDFFront Genet
November 2024
College of Animal Science and Technology, Yangtze University, Jingzhou, China.
Identification of key transcription factors from transcriptome data by correlating gene expression levels with transcription factor binding sites is important for transcriptome data analysis. In a typical scenario, we always set a threshold to filter the top ranked differentially expressed genes and top ranked transcription factor binding sites. However, correlation analysis of filtered data can often result in spurious correlations.
View Article and Find Full Text PDFNat Commun
December 2024
Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
Transcription generates superhelical stress in DNA that poses problems for genome stability, but determining when and where such stress arises within chromosomes is challenging. Here, using G1-arrested S. cerevisiae cells, and employing rapid fixation and ultra-sensitive enrichment, we utilise the physiological activity of endogenous topoisomerase 2 (Top2) as a probe of transcription-induced superhelicity.
View Article and Find Full Text PDFGermline mutations in SMCHD1, DNMT3B and LRIF1 can cause facioscapulohumeral muscular dystrophy type 2 (FSHD2). FSHD is an epigenetic skeletal muscle disorder in which partial failure in heterochromatinization of the D4Z4 macrosatellite repeat causes spurious expression of the repeat-embedded gene in skeletal muscle, ultimately leading to muscle weakness and wasting. All three proteins play a role in chromatin organization and gene silencing; however, their functional relationship has not been fully elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!