AI Article Synopsis

  • Developed a new method to measure protein binding affinity using microscale thermophoresis (MST) without needing purified proteins, making it quicker and less costly.
  • The protocol involves overexpressing a GFP-fused protein and lysing cells under gentle conditions, allowing for easier testing of interactions.
  • Successfully applied this method to determine the binding affinity of the transcription factor STAT3-GFP to various DNA sequences, which could open new avenues for studying diverse protein interactions.

Article Abstract

Quantitative characterization of protein interactions is essential in practically any field of life sciences, particularly drug discovery. Most of currently available methods of KD determination require access to purified protein of interest, generation of which can be time-consuming and expensive. We have developed a protocol that allows for determination of binding affinity by microscale thermophoresis (MST) without purification of the target protein from cell lysates. The method involves overexpression of the GFP-fused protein and cell lysis in non-denaturing conditions. Application of the method to STAT3-GFP transiently expressed in HEK293 cells allowed to determine for the first time the affinity of the well-studied transcription factor to oligonucleotides with different sequences. The protocol is straightforward and can have a variety of application for studying interactions of proteins with small molecules, peptides, DNA, RNA, and proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3846881PMC
http://dx.doi.org/10.3791/50541DOI Listing

Publication Analysis

Top Keywords

binding affinity
8
microscale thermophoresis
8
protein cell
8
protein
5
protein purification-free
4
purification-free method
4
method binding
4
affinity determination
4
determination microscale
4
thermophoresis quantitative
4

Similar Publications

Coral reefs are hotspots of marine biodiversity, which results in the synthesis of a wide variety of compounds with unique molecular scaffolds, and bioactivities, rendering reefs an ecosystem of interest. The chemodiversity stems from the intricate relationships between inhabitants of the reef, as the chemistry produced partakes in intra- and interspecies communication, settlement, nutrient acquisition, and defense. However, the coral reefs are declining at an unprecedented rate due to climate change, pollution, and increased incidence of pathogenic diseases.

View Article and Find Full Text PDF

Purpose: The major cardiac voltage-gated sodium channel Na1.5 (I) is essential for cardiac action potential initiation and subsequent propagation. Compound Chinese medicine Wenxin Keli (WXKL) has been shown to suppress arrhythmias and heart failure.

View Article and Find Full Text PDF

Background: Androgen receptor mutations, particularly T877A and W741L, promote prostate cancer (PCa). The main therapies against PCa use androgen receptor (AR) antagonists, including Bicalutamide; but these drugs lose their effectiveness over time. Chrysin is a flavonoid with several biological activities, including antitumoral properties; however, its potential as an antiandrogen must be explored.

View Article and Find Full Text PDF

Introduction: Multidrug-resistant (MDR) E. coli presents a significant challenge in clinical settings, necessitating the exploration of novel therapeutic agents. Phytochemicals from Punica granatum (pomegranate) leaves have shown potential antibacterial properties.

View Article and Find Full Text PDF

Background: Effective hemorrhage protocols prioritize immediate hemostatic resuscitation to manage hemorrhagic shock. Prehospital resuscitation using blood products, such as whole blood or alternatively dried plasma in its absence, has the potential to improve outcomes in hemorrhagic shock patients. However, integrating blood products into prehospital care poses substantial logistical challenges due to issues with storage, transport, and administration in field environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!