In pursuit of neurological therapies, the opioid system, specifically delta opioid receptors and delta opioid peptides, demonstrates promising therapeutic potential for stroke, Parkinson's disease, and other degenerative neurological conditions. Recent studies offer strong evidence in support of the therapeutic use of delta opioid receptors, and provide insights into the underlying mechanisms of action. Delta opioid receptors have been shown to confer protective effects by mediating ionic homeostasis and activating endogenous neuroprotective pathways. Additionally, delta opioid agonists such as (D-Ala 2, D-Leu 5) enkephalin (DADLE) have been shown to decrease apoptosis and promote neuronal survival. In its entirety, the delta opioid system represents a promising target for neural therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3794733PMC
http://dx.doi.org/10.3390/ijms140917410DOI Listing

Publication Analysis

Top Keywords

delta opioid
28
opioid receptors
12
opioid system
8
delta
7
opioid
7
opioid receptor
4
receptor peptide
4
peptide receptor-ligand
4
receptor-ligand neuroprotection
4
neuroprotection pursuit
4

Similar Publications

Buprenorphine is an agonist at the mu opioid receptor (MOR) and antagonist at the kappa (KOR) and delta (DOR) receptors and a nociceptin receptor (NOR) ligand. Buprenorphine has a relatively low intrinsic efficacy for G-proteins and a long brain and MOR dwell time. Buprenorphine ceiling on respiratory depression has theoretically been related multiple factors such as low intrinsic efficacy at MOR, binding to six-transmembrane MOR and interactions in MOR/NOR heterodimers.

View Article and Find Full Text PDF

Novel tertiary diarylethylamines as functionally selective agonists of the kappa opioid receptor.

Bioorg Med Chem Lett

January 2025

Contineum Therapeutics, 3565 General Atomics Court, Suite 200, San Diego, CA 92121, United States.

Novel kappa opioid receptor (KOR) agonists that preferentially activate G-protein signaling versus β-arrestin-2 recruitment are described. Starting from a literature-reported phenol-containing diphenethylamine KOR agonist, structure-activity relationship (SAR) studies revealed replacement of the phenol with various non-hydroxylated bicyclic heteroaromatics led to tertiary diarylethylamines which retained KOR agonist activity and improved metabolic stability in human liver microsomes. Further optimizations produced compound 39, a potent activator of G-protein signaling (GTPγS EC = 14 nM, 83 % E) that did not elicit a β-arrestin-2 recruitment functional response (E < 10 %).

View Article and Find Full Text PDF

Chronic non-cancer pain, defined by the Center for Disease Control and Prevention (CDC) as lasting beyond three months, significantly affects individuals' quality of life and is often linked to various medical conditions or injuries. Its management is complex. Cannabis, containing the key compounds Delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), has garnered interest for its potential in pain management, though it remains controversial due to its psychoactive effects and illegal status in many countries.

View Article and Find Full Text PDF

Delta-opioid receptors (δ-ORs) are known to be involved in associative learning and modulating motivational states. We wanted to study if they were also involved in naturally-occurring reinforcement learning behaviors such as vocal learning, using the zebra finch model system. Zebra finches learn to vocalize early in development and song learning in males is affected by factors such as the social environment and internal reward, both of which are modulated by endogenous opioids.

View Article and Find Full Text PDF

Scaled and Weighted Laplacian Matrices as Functional Descriptors for GPCR Ligands.

J Comput Chem

January 2025

Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, CDMX, Mexico.

The G protein-coupled receptor (GPCR) pharmacology accounts for a significant field in research, clinical studies, and therapeutics. Computer-aided drug discovery is an evolving suite of techniques and methodologies that facilitate accelerated progress in drug discovery and repositioning. However, the structure-activity relationships of molecules targeting GPCRs are highly challenging in many cases since slight structural modifications can lead to drastic changes in biological functionality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!