Background/aim: Neuronal development is regulated by extracellular environmental factors including nerve growth factor (NGF) and laminin. We have previously demonstrated that laminin-1 promotes neurite outgrowth of dorsal root ganglion cells by modulating NGF and integrin signaling. However, information about their effects on the enteric nervous system (ENS) is limited. Recently, we succeeded in visualizing enteric neural crest-derived cell (ENCC) migration using SOX10-Venus transgenic mice, in which ENCC are labeled with a green fluorescent protein, Venus. In this study, we examine the effects of NGF and laminin-1 in ENCC migration using SOX10-Venus mice gut.

Methods: Pregnant SOX10-Venus mice were killed on day 12.5 of gestation. The colorectum was dissected from embryos (n = 10) and placed in culture medium including NGF with or without laminin-1 for 12 h. Extension rates of ENCC migration, colorectum and ENCC migration per colorectum were calculated.

Results: Venus positive-ENCC extension rate was significantly higher in the laminin group (n = 5) compared to control (n = 5), 22.84 and 13.96 %, respectively (p < 0.05). The extension rate of the colorectum was not significantly different between the two groups.

Conclusions: Our results suggest that laminin promotes ENCC migration in mice. This technique allowed us to visualize the effects of extracellular molecules on ENCC migration and it potentially provides us with an insight into the pathophysiology of developmental disorders of the ENS, such as Hirschsprung's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00383-013-3388-3DOI Listing

Publication Analysis

Top Keywords

encc migration
24
laminin-1 promotes
8
enteric nervous
8
nervous system
8
migration sox10-venus
8
ngf laminin-1
8
sox10-venus mice
8
migration colorectum
8
extension rate
8
encc
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!