In this study, serine protease (subtilisin Carlsberg) was immobilized on pentynyl dextran (PyD, O-alkynyl ether of dextran, 1) and used for the transesterification of N-acetyl-L-phenylalanine ethyl ester (2) with different aliphatic (1-propanol, 1-butanol, 1-pentanol, 1-hexanol) and aromatic (benzyl alcohol, 2-phenyl ethanol, 4-phenyl-1-butanol) alcohols in tetrahydrofuran (THF). The effect of carbon chain length in aliphatic and aromatic alcohols on initial and average transesterification rate, transesterification activity of immobilized enzyme and yield of the reaction under selected reaction conditions was investigated. The transesterification reactivity of the enzyme and yield of the reaction increased as the chain length of the alcohols decreased. Furthermore, almost no change in yield was observed when the immobilized enzyme was repeatedly used for selected alcohols over six cycles. Intrinsic fluorescence analysis showed that the catalytic activity of the immobilized enzyme in THF was maintained due to retention of the tertiary structure of the enzyme after immobilization on PyD (1).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-013-1038-8DOI Listing

Publication Analysis

Top Keywords

immobilized enzyme
12
pentynyl dextran
8
serine protease
8
protease subtilisin
8
subtilisin carlsberg
8
transesterification n-acetyl-l-phenylalanine
8
n-acetyl-l-phenylalanine ethyl
8
ethyl ester
8
chain length
8
activity immobilized
8

Similar Publications

ConspectusIn the search for efficient and selective electrocatalysts capable of converting greenhouse gases to value-added products, enzymes found in naturally existing bacteria provide the basis for most approaches toward electrocatalyst design. Ni,Fe-carbon monoxide dehydrogenase (Ni,Fe-CODH) is one such enzyme, with a nickel-iron-sulfur cluster named the C-cluster, where CO binds and is converted to CO at high rates near the thermodynamic potential. In this Account, we divide the enzyme's catalytic contributions into three categories based on location and function.

View Article and Find Full Text PDF

Nowadays, metal-organic frameworks (MOFs) have been emerged as an efficient platform for enzyme immobilization due to their high porosity, tunability, and chemical versatility. In this study, a series of hybrid lipase@NKMOF-101-M (M = Mg, Mn, Zn, Co, or Ni) biocatalysts were constructed through a facile in situ encapsulation method, and the encapsulation and immobilization of lipase in MOFs were carefully validated. The catalytic activity of lipase@NKMOF-101-Mn was 2-fold higher than that of lipase@ZIF-8 and 3-fold higher than that of lipase@MCM-41 due to its excellent dispersibility and hydrophobicity in hexane.

View Article and Find Full Text PDF

Climate change and the energy crisis, driven by excessive CO emissions, have emerged as pressing global challenges. The conversion of CO into high-value chemicals not only mitigates atmospheric CO levels but also optimizes carbon resource utilization. Enzyme-catalyzed carbon technology offers a green and efficient approach to CO conversion.

View Article and Find Full Text PDF

Various Options for Covalent Immobilization of Cysteine Proteases-Ficin, Papain, Bromelain.

Int J Mol Sci

January 2025

Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia.

This study explores various methods for the covalent immobilization of cysteine proteases (ficin, papain, and bromelain). Covalent immobilization involves the formation of covalent bonds between the enzyme and a carrier or between enzyme molecules themselves without a carrier using a crosslinking agent. This process enhances the stability of the enzyme and allows for the creation of preparations with specific and controlled properties.

View Article and Find Full Text PDF

Biodegradation of Phenol at High Initial Concentration by 3D Strain: Biochemical and Genetic Aspects.

Microorganisms

January 2025

Laboratory of Microbial Enzymology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, 142290 Pushchino, Russia.

Phenolic compounds are an extensive group of natural and anthropogenic organic substances of the aromatic series containing one or more hydroxyl groups. The main sources of phenols entering the environment are waste from metallurgy and coke plants, enterprises of the leather, furniture, and pulp and paper industries, as well as wastewater from the production of phenol-formaldehyde resins, adhesives, plastics, and pesticides. Among this group of compounds, phenol is the most common environmental pollutant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!