New insights into polyurethane biodegradation and realistic prospects for the development of a sustainable waste recycling process.

Biotechnol Adv

University of Nantes, UMR CNRS, 6144 GEPEA CBAC lab, 18 Bvd Gaston Defferre, 85035 La Roche sur Yon, France.

Published: December 2013

Polyurethanes are polymeric plastics that were first used as substitutes for traditional polymers suspected to release volatile organic hazardous substances. The limitless conformations and formulations of polyurethanes enabled their use in a wide variety of applications. Because approximately 10 Mt of polyurethanes is produced each year, environmental concern over their considerable contribution to landfill waste accumulation appeared in the 1990s. To date, no recycling processes allow for the efficient reuse of polyurethane waste due to their high resistance to (a)biotic disturbances. To find alternatives to systematic accumulation or incineration of polyurethanes, a bibliographic analysis was performed on major scientific advances in the polyurethane (bio)degradation field to identify opportunities for the development of new technologies to recondition this material. Until polymers exhibiting oxo- or hydro-biodegradative traits are generated, conventional polyurethanes that are known to be only slightly biodegradable are of great concern. The research focused on polyurethane biodegradation highlights recent attempts to reprocess conventional industrial polyurethanes via microbial or enzymatic degradation. This review describes several wonderful opportunities for the establishment of new processes for polyurethane recycling. Meeting these new challenges could lead to the development of sustainable management processes involving polymer recycling or reuse as environmentally safe options for industries. The ability to upgrade polyurethane wastes to chemical compounds with a higher added value would be especially attractive.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biotechadv.2013.08.011DOI Listing

Publication Analysis

Top Keywords

polyurethane biodegradation
12
development sustainable
8
polyurethanes
6
polyurethane
5
insights polyurethane
4
biodegradation realistic
4
realistic prospects
4
prospects development
4
sustainable waste
4
recycling
4

Similar Publications

Single-walled carbon nanotubes (SWCNTs) are fluorescent materials that have been developed as sensors for measuring the activities of enzymes. However, most sensors to date rely on end-point measurement and empirical functions to correlate enzyme concentrations with fluorescence responses. Less emphasis is put on analyzing time-dependent fluorescence responses and their connections with enzymatic kinetics.

View Article and Find Full Text PDF

A one-step and solvent-free strategy for high lignin-containing polyurethane elastomers with excellent mechanical and shape memory performance.

Int J Biol Macromol

December 2024

Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Waihuan Xi Road 100, Guangzhou, Guangdong 510006, PR China.

Lignin, a renewable and biodegradable polymer, offers a promising alternative to petroleum-based polyols for polyurethane elastomer synthesis. However, its complex structure poses challenges, such as poor dispersibility and reactivity. This study introduces a novel one-step and solvent-free method for synthesizing lignin-containing polyurethane elastomers (SF-LPUes-ONE) with a high lignin substitution rate of at least 30 wt%.

View Article and Find Full Text PDF

Foam-based wound dressing materials produced by dispersing gas phases in a polymeric material are soft, adapt to the body shape, and allow the absorption of wound exudate due to their porous structure. Most of these formulations are based on synthetic substances such as polyurethane. However, biopolymers have entered the field as a new player thanks to their biocompatible and sustainable nature.

View Article and Find Full Text PDF

Background: The colonization of (SA) acquired in nosocomial infections may develop acute and chronic infections such as Methicillin-Resistant (MRSA) in the nose. As a commensal microorganism with the ability to form a biofilm, SA can dwell on the skin, nostrils, throat, perineum, and axillae of healthy humans. Nitric oxide (NO) is an unstable gas with various molecular functions and has antimicrobial properties which are converted into many potential treatments.

View Article and Find Full Text PDF

Biodegradable polymers and bioceramics give rise to composite structures that serve as scaffolds to promote tissue regeneration. The current research explores the preparation of biodegradable filaments for additive manufacturing. Bioresorbable segmented poly(ester urethanes) (SPEUs) are easily printable elastomers but lack bioactivity and present low elastic modulus, making them unsuitable for applications such as bone tissue engineering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!