Inactivation of jack bean urease by scutellarin: elucidation of inhibitory efficacy, kinetics and mechanism.

Fitoterapia

College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan 523000, PR China. Electronic address:

Published: December 2013

In the present study, the inactivation effect of scutellarin (SL) on jack bean urease was investigated to elucidate the inhibitory potency, kinetics and mechanism of inhibition. It was revealed that SL acted as a concentration- and time-dependent inactivator of urease characteristic of slow-binding inhibition with an IC50 of 1.35±0.15 mM. The rapid formation of the initial SL-urease complex with an inhibition constant of Ki=5.37×10(-2) mM was followed by a slow isomerization into the final complex with the overall inhibition constant of Ki*=3.49×10(-3) mM. High effectiveness of thiol protectors, such as L-cysteine (L-cys), 2-mercaptoethanol (2-ME) and dithiothreitol (DTT) significantly slowed down the rate of inactivation, indicating the strategic role of the active site sulfhydryl group in the blocking process. While the insignificant protection by boric acid and fluoride from the inactivation further confirmed that the active site cysteine should be obligatory for urease inhibition, which was also rationalized by the molecular docking study. The inhibition of SL on urease proved to be reversible since SL-blocked urease could be reactivated by DTT application and multidilution. The results obtained indicated that urease inactivation resulted from the reaction between SL and the sulfhydryl group.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fitote.2013.08.012DOI Listing

Publication Analysis

Top Keywords

jack bean
8
bean urease
8
kinetics mechanism
8
complex inhibition
8
inhibition constant
8
active site
8
sulfhydryl group
8
urease
7
inhibition
6
inactivation
5

Similar Publications

Enantiomeric C-6 fluorinated swainsonine derivatives as highly selective and potent inhibitors of α-mannosidase and α-l-rhamnosidase: Design, synthesis and structure-activity relationship study.

Eur J Med Chem

January 2025

Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

Six C-6 fluorinated d-swainsonine derivatives and their enantiomers have been designed based on initial docking calculations, and synthesized from enantiomeric ribose-derived aldehydes, respectively. Glycosidase inhibition assay of these derivatives with d-swainsonine (1) and l-swainsonine (ent-1) as contrasts found that the C-6 fluorinated d-swainsonine derivatives with C-8 configurations as R (α) showed specific and potent inhibitions of jack bean α-mannosidase (model enzyme of Golgi α-mannosidase II); whereas their enantiomers with C-8 configurations as S (β) were powerful and selective α-l-rhamnosidase inhibitors. Molecular docking calculations found the C-6 fluorinatedd-swainsonine derivatives 21, 24 and 25 with highly coincident binding conformations with d-swainsonine (1) in their interactions with the active site of α-mannosidase (PDB ID: 1HWW).

View Article and Find Full Text PDF

Effects of enzyme-induced carbonate precipitation (EICP) with different urease sources on the zinc remediation.

J Hazard Mater

December 2024

Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding, Hebei, China. Electronic address:

Enzyme-induced carbonate precipitation (EICP) has been studied in the remediation of heavy metals in recent years. This study aims to investigate the impact of EICP with jack bean urease (JU) and sword bean urease (SU) on the Zn remediation. The results show that relatively high concentration of organic molecules in SU can protect urease from deactivation and absorb Zn.

View Article and Find Full Text PDF

Exploring the catalytic potential of watermelon urease: Purification, biochemical characterization, and heavy metal precipitation.

Int J Biol Macromol

December 2024

School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India. Electronic address:

Bioactive urease from watermelon (Citrullus lanatus) seeds was purified using acetone fractionation, anion-exchange, and size-exclusion chromatography, achieving a 121-fold increase and specific activity of 3216 U/mg. The enzyme appeared as a single band on native and SDS-PAGE, with a molecular mass of 480 ± 10 kDa and subunit mass of 80 ± 10 kDa, indicating six identical subunits. Atomic absorption spectroscopy revealed 1.

View Article and Find Full Text PDF

The production of inflammatory cytokines such as tumor necrosis factor (TNF)-α by activated macrophage cells plays an important role in the development of intestinal inflammation. The present study investigated the anti-inflammatory effect of the protein hydrolysates prepared from the jack bean (JBPHs), (L.) DC, using the enzyme Alcalase, in a murine macrophage model, RAW 264.

View Article and Find Full Text PDF

Background: is a common tropical seacoast flowering plant from the family of Fabaceae which is reported as bay bean and coastal jack bean; has a wide range of therapeutic and nutraceutical properties.

Aim: The present research aims to explore some pharmacological insights of the methanol extract of leaves (MECR) and its chloroform fraction (CFCR) and n-hexane fraction (NFCR) through and approaches.

Methods: Different fractions of were subjected to ferric reduction assay and total phenolic and flavonoid content assay to explore their antioxidant potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!