Alkaloids are interesting groups of natural products with important biological properties, but naturally available alkaloids are insufficient for biological studies. Therefore, the demand for higher amounts of alkaloids made research community to synthesize alkaloids by innovative techniques. The importance of asymmetric reactions for scientific community to obtain enantiomerically pure compounds with good yield and diastereomeric excess (de) or enantiomeric excess (ee) by different strategies of asymmetric induction is emphasized in this review. In addition, importance have been given to discuss on biologically important alkaloids, their skeleton synthesis, intermediates and total synthesis with different strategies mainly based on chiral auxiliaries, chiral reagents and chiral metal ligand based catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/15680266113139990151 | DOI Listing |
J Diabetes Metab Disord
June 2025
Department of Physiology, Kampala International University, Western Campus, Ishaka, Uganda.
Purpose: Diabetes mellitus is a global health challenge that leads to severe complications, negatively impacting overall health, life expectancy, and quality of life. Herbal medicines, valued for their accessibility and therapeutic benefits with minimal side effects, have been promoted as potential treatments. Managing conditions like diabetes, characterized by free radical production and cytokine-driven inflammation, is vital due to the active components in plants that exert direct pharmacological effects.
View Article and Find Full Text PDFEXCLI J
November 2024
Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy.
The p53-MDM2 pathway plays a crucial role regulating tumor suppression and is a focal point of cancer research. This literature review delves into the complex interplay between the tumor suppressor protein p53 and its main regulator MDM2, highlighting their interaction and implications in cancer development and progression. The review compiles and summarizes the existing understanding of the biology and regulation of p53 and MDM2, emphasizing their roles in various cellular processes, including cell cycle regulation, DNA repair, apoptosis, and metabolism.
View Article and Find Full Text PDFChem Biodivers
January 2025
Ataturk University: Ataturk Universitesi, Pharmacognosy, Erzurum, Erzurum, TURKEY.
Boraginaceae plants, including four endemic species from Türkiye, were analyzed for organic and inorganic compositions using ICP-MS and LC-MS/MS to explore their nutritional, medicinal, and ecological significance. This study examined 18 species, identifying key elements such as sodium (87,600.359-118,049.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
School of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong 518118, China.
The okaramine family of compounds, a class of alkaloids with broad-spectrum insecticidal activity, has been discovered from species of and . These okaramines, characterized by their complex structures and diverse biological activities, have attracted widespread attention from biologists and chemists. To date, only a few okaramines have been synthesized, notably the highly active okaramines A and B, which feature a polycyclic skeleton, including an azocine ring and an unprecedented 2-dimethyl-3-methyl-azetidine ring.
View Article and Find Full Text PDFPrev Nutr Food Sci
December 2024
School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Korea.
, a medicinal plant traditionally used in Southeast Asia, exerts protective effects against various inflammatory diseases, primarily due to its rich alkaloid content. Despite substantial evidence supporting its anti-inflammatory properties, the biological activities of are unclear. This study aimed to elucidate anticolitis mechanisms of alkaloids (CFAs) using an integrative approach of network pharmacology and molecular docking analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!