Crystallographic fragment screening and structure-based optimization yields a new class of influenza endonuclease inhibitors.

ACS Chem Biol

Center for Advanced Biotechnology and Medicine, ‡Department of Chemistry and Chemical Biology, §Department of Medicinal Chemistry, Rutgers University, Piscataway, New Jersey 08854, United States.

Published: November 2013

Seasonal and pandemic influenza viruses continue to be a leading global health concern. Emerging resistance to the current drugs and the variable efficacy of vaccines underscore the need for developing new flu drugs that will be broadly effective against wild-type and drug-resistant influenza strains. Here, we report the discovery and development of a class of inhibitors targeting the cap-snatching endonuclease activity of the viral polymerase. A high-resolution crystal form of pandemic 2009 H1N1 influenza polymerase acidic protein N-terminal endonuclease domain (PAN) was engineered and used for fragment screening leading to the identification of new chemical scaffolds binding to the PAN active site cleft. During the course of screening, binding of a third metal ion that is potentially relevant to endonuclease activity was detected in the active site cleft of PAN in the presence of a fragment. Using structure-based optimization, we developed a highly potent hydroxypyridinone series of compounds from a fragment hit that defines a new mode of chelation to the active site metal ions. A compound from the series demonstrating promising enzymatic inhibition in a fluorescence-based enzyme assay with an IC50 value of 11 nM was found to have an antiviral activity (EC50) of 11 μM against PR8 H1N1 influenza A in MDCK cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3928712PMC
http://dx.doi.org/10.1021/cb400400jDOI Listing

Publication Analysis

Top Keywords

active site
12
fragment screening
8
structure-based optimization
8
endonuclease activity
8
h1n1 influenza
8
site cleft
8
influenza
5
crystallographic fragment
4
screening structure-based
4
optimization yields
4

Similar Publications

Adhesions in the deep infrapatellar region may occur as iatrogenic complications (e.g., after bone-patellar tendon-bone grafting), as part of arthrofibrosis or infrapatellar contracture syndrome, or owing to specific diseases such as Osgood-Schlatter disease.

View Article and Find Full Text PDF

is a leading cause of bacteria-associated mortality worldwide. This is largely because infection sites are often difficult to localize and the bacteria forms biofilms which are not effectively cleared using classical antibiotics. Therefore, there is a need for new tools to both image and treat infections.

View Article and Find Full Text PDF

Modulating Oxygen Reduction Activity in Chalcogenophene-Incorporated Organic Electrocatalysts through Main-Group Element Engineering.

Small

December 2024

State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.

Organic small molecules (OSMs) with well-defined structures are crucial integral components of cathode catalysts for fuel cells. Despite the acknowledged potential of heteroatom doping to enhance the catalytic performance of metal-free carbon-based catalysts, there exists a notable gap in conducting molecular structure and catalytic activity, particularly under the premise of maintaining a constant molecular skeleton and with a clear molecular structure. Herein, the charge distribution is modulated by introducing different chalcogens into the same molecular skeleton through main-group engineering.

View Article and Find Full Text PDF

Histone deacetylase 3 (HDAC3) inhibitors keep significant therapeutic promise for treating oncological, neurodegenerative, and inflammatory diseases. In this work, we developed robust QSAR regression models for HDAC3 inhibitory activity and acute toxicity (LD, intravenous administration in mice). A total of 1751 compounds were curated for HDAC3 activity, and 15,068 for toxicity.

View Article and Find Full Text PDF

Quantitative redox proteomics links thioredoxin to heavy ion resistance in Deinococcus radiodurans.

Free Radic Biol Med

December 2024

State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China; School of Basic Medicine, Anhui Medical University, Hefei 230032, China; Department of Biomedicine, Medical College, Guizhou University, Guiyang, 550025, China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Second Clinical Medicine Collage, Guangzhou Higher Education Mega Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Hengyang Medical School, University of South China, Hengyang 421001, China. Electronic address:

Heavy ion radiotherapy is an effective treatment for tumors, but its therapeutic efficacy is limited in cancer cells with radiation resistance. Deinococcus radiodurans, well known for its extremely resisting various stresses, was used to explore radioresistant mechanism. We used quantitative redox proteomics to track the dynamic changes in the global redox state after C irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!