In this paper, we describe the synthesis and characterization of a series of new bimodal probes combining water-soluble sulfonated zinc phthalocyanine (ZnPc) as a fluorescence imaging unit and either (68)Ga/1,4,7,10-tetraazocyclododecane-N,N'N″,N'″-tetraacetic acid (DOTA) or (64)Cu/1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) for PET imaging. The two moieties were linked through aliphatic chains of different lengths to modulate amphiphilicity. Labeling of DOTA- or NOTA-ZnPc conjugates with (68)Ga (t1/2 = 68 min) and (64)Cu (t1/2 = 12.7 h) was performed at 100 °C for 15 min with >90% efficiency for all conjugates. In vitro plasma stability assays demonstrated high stability of the (64)Cu/NOTA-ZnPc conjugate, which remained intact over a 24 h time period, and reasonably high stability of the (68)Ga/DOTA-ZnPc conjugate, which released up to 7% of free (68)Ga over a 3 h period. Based on in vitro plasma stability results, we performed biodistribution studies on two (64)Cu-labeled derivatives, which allowed us to select a single candidate for preliminary in vivo experiments. Fluorescence and PET imaging confirmed the potential of these novel conjugates to act as bimodal probes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bc400257u | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!