Since the pioneering work of DeBakey, Cooley, and colleagues more than 50 years ago, surgical treatment of aneurysms involving the transverse aortic arch has been associated with substantial morbidity and mortality. Over the past 15 years, techniques for replacing the diseased aortic arch have evolved substantially. Previously, our approach to these operations involved femoral cannulation, profound-to-deep hypothermic circulatory arrest and retrograde cerebral perfusion, and the island technique for reattaching the brachiocephalic vessels. In contrast, we currently use innominate artery cannulation, deep-to-moderate hypothermic circulatory arrest with antegrade cerebral perfusion, bilateral cerebral monitoring with near-infrared spectroscopy, and the trifurcated graft (Y-graft) technique for reattaching the arch branches. Cannulating the innominate artery to provide an inflow site for cardiopulmonary bypass has facilitated the use of antegrade cerebral perfusion as a cerebral protection strategy; the left common carotid artery is additionally perfused to provide bilateral cerebral perfusion. Despite having a systemic circulatory arrest time that often exceeds 60 minutes, these improved perfusion strategies make it possible to consistently avoid cerebral circulatory arrest all together. A moderate temperature target of between 18 and 23 °C is now used; this appears to reduce the risk of hypothermic coagulopathy and improve hemostasis. Y-graft techniques, such as the trifurcated graft approach, have the advantages of eliminating residual aortic arch tissue and being easily tailored to the needs of the individual patient. This report describes total aortic arch replacement in patients with aneurysms that are confined to the ascending aorta and transverse aortic arch.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3741858 | PMC |
http://dx.doi.org/10.3978/j.issn.2225-319X.2013.05.02 | DOI Listing |
Nat Commun
December 2024
Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
Adverse aortic remodeling increases the risk of aorta-related adverse events (AAEs) after thoracic endovascular aortic repair (TEVAR) and affects the overall prognosis of aortic dissection (AD). It is imperative to delve into the exploration of prognostic indicators to streamline the identification of individuals at elevated risk for postoperative AAEs, and therapeutic targets to optimize the efficacy of TEVAR for patients with AD. Here, we perform proteomic and single-cell transcriptomic analyses of peripheral blood and aortic lesions, respectively, from patients with AD and healthy subjects.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Thoracic and Cardiovascular Surgery, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
Background: We investigated the effects of C-reactive protein (CRP) deposition on the vessel walls in abdominal aortic aneurysm (AAA) by analyzing spatially resolved changes in gene expression. Our aim was to elucidate the pathways that contribute to disease progression.
Methods: AAA specimens from surgically resected formalin-fixed paraffin-embedded tissues were categorized into the AAA-high CRP [serum CRP ≥ 0.
J Cardiothorac Surg
December 2024
Beijing Children's Hospital Capital Medical University Beijing, Beijing, China.
Objective: Berry syndrome is a group of rare congenital cardiac malformations including aortopulmonary window (APW), aortic origin of the right pulmonary artery (AORPA), interruption of the aortic arch (IAA), patent ductus arteriosus (PDA) (supplying the descending aorta) and intact ventricular septum. This paper will analyze the clinical data of 7 patients with Berry syndrome who underwent surgical treatment in our institution and discuss the one-stage surgical correction of Berry syndrome in combination with the literature.
Methods: From January 2013 to July 2024, a total of 7 children with Berry syndrome were admitted to the Cardiac Surgery Department of Beijing Children's Hospital.
J Cardiothorac Surg
December 2024
Department of Cardiovascular Surgery, Kanazawa University, Takaramachi 13-1, Kanazawa, 920-8641, Japan.
Background: Acute type A aortic dissection (A-AAD) with severe acute aortic regurgitation (AR) and coronary involvement is a potentially fatal condition that causes left ventricular volume overload and catastrophic acute myocardial infarction. We present the successful management of a patient using Impella 5.5 following cardiopulmonary arrest caused by A-AAD with severe acute AR and left main trunk (LMT) obstruction.
View Article and Find Full Text PDFAnn Vasc Surg
December 2024
Department of Interventional Radiology, Semmelweis University, Budapest, Hungary; Semmelweis Aortic Center, Heart and Vascular Center, Semmelweis University, Budapest, Hungary. Electronic address:
Objective: Open surgical suprarenal aortic fenestration (OSSAF) is a technique to treat complicated type B aortic dissection (cTBAD) by resecting the intimal membrane at the level of the visceral arteries. This invasive procedure is largely abandoned since the advent of thoracic endovascular aortic repair (TEVAR) as becoming the gold standard of treating cTBAD. Identifying patterns in the late history of patients who underwent OSSAF might help better understand the evolution of TBAD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!