Improving metabolic health in obese male mice via diet and exercise restores embryo development and fetal growth.

PLoS One

School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, University of Adelaide, South Australia, Australia.

Published: April 2014

Paternal obesity is now clearly associated with or causal of impaired embryo and fetal development and reduced pregnancy rates in humans and rodents. This appears to be a result of reduced blastocyst potential. Whether these adverse embryo and fetal outcomes can be ameliorated by interventions to reduce paternal obesity has not been established. Here, male mice fed a high fat diet (HFD) to induce obesity were used, to determine if early embryo and fetal development is improved by interventions of diet (CD) and/or exercise to reduce adiposity and improve metabolism. Exercise and to a lesser extent CD in obese males improved embryo development rates, with increased cell to cell contacts in the compacting embryo measured by E-cadherin in exercise interventions and subsequently, increased blastocyst trophectoderm (TE), inner cell mass (ICM) and epiblast cell numbers. Implantation rates and fetal development from resulting blastocysts were also improved by exercise in obese males. Additionally, all interventions to obese males increased fetal weight, with CD alone and exercise alone, also increasing fetal crown-rump length. Measures of embryo and fetal development correlated with paternal measures of glycaemia, insulin action and serum lipids regardless of paternal adiposity or intervention, suggesting a link between paternal metabolic health and subsequent embryo and fetal development. This is the first study to show that improvements to metabolic health of obese males through diet and exercise can improve embryo and fetal development, suggesting such interventions are likely to improve offspring health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747240PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0071459PLOS

Publication Analysis

Top Keywords

embryo fetal
24
fetal development
24
obese males
16
metabolic health
12
fetal
10
embryo
9
health obese
8
male mice
8
diet exercise
8
development
8

Similar Publications

Epidemic Zika virus strains from the Asian lineage induce an attenuated fetal brain pathogenicity.

Nat Commun

December 2024

KU Leuven Department of Microbiology, Immunology and Transplantation, Virology, Antiviral Drug & Vaccine Research Group, Rega Institute for Medical Research, Leuven, Belgium.

The 2015-2016 Zika virus (ZIKV) outbreak in the Americas revealed the ability of ZIKV from the Asian lineage to cause birth defects, generically called congenital Zika syndrome (CZS). Notwithstanding the long circulation history of Asian ZIKV, no ZIKV-associated CZS cases were reported prior to the outbreaks in French Polynesia (2013) and Brazil (2015). Whether the sudden emergence of CZS resulted from an evolutionary event of Asian ZIKV has remained unclear.

View Article and Find Full Text PDF

Zika virus (ZIKV) infection can result in a birth defect of the brain called microcephaly and other severe fetal brain defects. ZIKV enters the susceptible host cells by endocytosis, which is mediated by the interaction of the envelope (E) glycoprotein with cellular surface receptor molecules. However, the cellular factors that used by the ZIKV to gain access to host cells remains elusive.

View Article and Find Full Text PDF

Innervation of the female internal genital organs in 12-week-old porcine foetuses.

Pol J Vet Sci

December 2024

Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland.

This is the first study aimed to investigate the innervation of the internal genital organs in 12-week-old female pig foetuses using single and double-labelling immunofluorescence methods. Immunostaining for protein gene product 9.5 (PGP, general neural marker) revealed that the most numerous PGP-positive nerve fibres were found in the mesenchyme of the uterovaginal canal height.

View Article and Find Full Text PDF

Background: Stress can cause an increase in proinflammatory cytokines, IL-6, which plays a role in the inflammatory response and causes changes in the placenta, causing a low risk of the fetus being born. Giving nanocurcumin, which functions as an anti-inflammatory and antioxidant, is expected to reduce cortisol levels which increase during pregnancy.

Aim: This study aims to determine the effect of stress during pregnancy on pregnant mice, namely IL-6 expression and fetal body weight.

View Article and Find Full Text PDF

Objective: Gestational diabetes mellitus (GDM) is a common complication during pregnancy and increases the risk of metabolic diseases in offspring. We hypothesize that the poor intrauterine environment in pregnant women with GDM may lead to chromosomal DNA damage and telomere damage in umbilical cord blood cells, providing evidence of an association between intrauterine programming and increased long-term metabolic disease risk in offspring.

Methods: We measured telomere length (TL), serum telomerase (TE) activity, and oxidative stress markers in umbilical cord blood mononuclear cells (CBMCs) from pregnant women with GDM (N=200) and healthy controls (Ctrls) (N=200) and analysed the associations of TL with demographic characteristics, biochemical indicators, and blood glucose levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!