AI Article Synopsis

  • * Researchers used a technique called lentiviral transgenesis to create a cohort of pigs expressing a mutant GUCY2D gene, leading to 60% of piglets becoming transgenic.
  • * The transgenic pigs displayed impaired vision and abnormal retinal morphology, reflecting the diversity of disease severity seen in human patients, indicating the method's effectiveness in producing relevant animal models.

Article Abstract

Large animal models are an important resource for the understanding of human disease and for evaluating the applicability of new therapies to human patients. For many diseases, such as cone dystrophy, research effort is hampered by the lack of such models. Lentiviral transgenesis is a methodology broadly applicable to animals from many different species. When conjugated to the expression of a dominant mutant protein, this technology offers an attractive approach to generate new large animal models in a heterogeneous background. We adopted this strategy to mimic the phenotype diversity encounter in humans and generate a cohort of pigs for cone dystrophy by expressing a dominant mutant allele of the guanylate cyclase 2D (GUCY2D) gene. Sixty percent of the piglets were transgenic, with mutant GUCY2D mRNA detected in the retina of all animals tested. Functional impairment of vision was observed among the transgenic pigs at 3 months of age, with a follow-up at 1 year indicating a subsequent slower progression of phenotype. Abnormal retina morphology, notably among the cone photoreceptor cell population, was observed exclusively amongst the transgenic animals. Of particular note, these transgenic animals were characterized by a range in the severity of the phenotype, reflecting the human clinical situation. We demonstrate that a transgenic approach using lentiviral vectors offers a powerful tool for large animal model development. Not only is the efficiency of transgenesis higher than conventional transgenic methodology but this technique also produces a heterogeneous cohort of transgenic animals that mimics the genetic variation encountered in human patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747164PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0071363PLOS

Publication Analysis

Top Keywords

large animal
16
cone dystrophy
12
transgenic animals
12
animal model
8
animal models
8
human patients
8
dominant mutant
8
transgenic
7
animals
5
rapid cohort
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!