Background: Previous studies have determined the neurochemical metabolite abnormalities in major depressive disorder (MDD). The results of studies are inconsistent. Severity of depression may relate to neurochemical metabolic changes. The aim of this study is to investigate neurochemical metabolite levels in the prefrontal cortex (PFC) of patients with mild/moderate MDD.

Methods: Twenty-one patients with mild MDD, 18 patients with moderate MDD, and 16 matched control subjects participated in the study. Patients had had their first episode. They had not taken treatment. The severity of depression was assessed by the Hamilton Rating Scale for Depression (HAM-D). Levels of N-acetyl aspartate (NAA), choline-containing compounds (Cho), and creatine-containing compounds (Cr) were measured using proton magnetic resonance spectroscopy (1H-MRS) at 1.5 T, with an 8-cm(3) single voxel placed in the right PFC.

Results: The moderate MDD patients had lower NAA/Cr levels than the control group. No differences were found in neurochemical metabolite levels between the mild MDD and control groups. No correlation was found between the patients' neurochemical metabolite levels and HAM-D scores.

Conclusion: Our findings suggest that NAA/Cr levels are low in moderate-level MDD in the PFC. Neurochemical metabolite levels did not change in mild depressive disorder. Our results suggest that the severity of depression may affect neuronal function and viability. Studies are needed to confirm this finding, including studies on severely depressive patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747025PMC
http://dx.doi.org/10.2147/NDT.S42627DOI Listing

Publication Analysis

Top Keywords

neurochemical metabolite
20
metabolite levels
16
severity depression
12
prefrontal cortex
8
patients mild/moderate
8
levels
8
depressive disorder
8
mild mdd
8
mdd patients
8
moderate mdd
8

Similar Publications

Improving brain health via the central executive network.

J Physiol

January 2025

Functional Flow Solutions LLC, Albuquerque, New Mexico, USA.

Cognitive and physical stress have significant effects on brain health, particularly through their influence on the central executive network (CEN). The CEN, which includes regions such as the dorsolateral prefrontal cortex, anterior cingulate cortex and inferior parietal lobe, is central to managing the demands of cognitively challenging motor tasks. Acute stress can temporarily reduce connectivity within the CEN, leading to impaired cognitive function and emotional states.

View Article and Find Full Text PDF

The Neurometabolic Function of the Dopamine-Aminotransferase System.

Metabolites

January 2025

Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia.

Background/objectives: The neurometabolic function is controlled by a complex multi-level physiological system that includes neurochemical, hormonal, immunological, sensory, and metabolic components. Functional disorders of monoamine systems are often detected in clinical practice together with metabolic dysfunctions. An important part of the mentioned pathological conditions are associated with disturbances in protein metabolism, some of the most important biomarkers which are aminotransferases and transcription factors that regulate and direct the most important metabolic reactions.

View Article and Find Full Text PDF

Neurochemical Alterations Linked to Persistent COVID-19-Induced Anosmia: Probing Into Orbitofrontal Cortex by Magnetic Resonance Spectroscopy.

Acad Radiol

January 2025

Department of Otolaryngology and Head and Neck Surgery, School of Medicine, Otorhinolaryngology Research Center, Guilan University of Medical Sciences, Rasht, Iran (M.H.D., S.N.). Electronic address:

Background: While many COVID-19-induced anosmia patients recover their sense of smell within a few months, a substantial number of them continue to experience olfactory impairment. In our primary study, the metabolic patterns in orbitofrontal cortex (OFC) were observed to exhibit more alterations than other regions. Hence, this study specifically probes into alterations within OFC region in subjects with persistent COVID-19-induced anosmia.

View Article and Find Full Text PDF

-Cresol, an environmental contaminant and endogenous metabolite derived primarily from the conversion of l-tyrosine by intestinal microflora, is gaining increasing attention, due to its potential impact on human health. Recent studies have highlighted elevated levels of -cresol and its metabolites, including -cresyl sulfate and -cresyl glucuronide, in various populations, suggesting a correlation with neurodevelopmental and neurodegenerative conditions. While the role of this compound as a uremic toxin is well established, its presence and concentration within the central nervous system (CNS) remain largely unexplored.

View Article and Find Full Text PDF

1-Methylxanthine (1-MX) is the major metabolite of caffeine and paraxanthine and might contribute to their activity. 1-MX is an adenosine receptor antagonist and increases the release and survivability of neurotransmitters; however, no study has addressed the potential physiological effects of 1-MX ingestion. The aim of this study was to compare the effect of 1-MX on memory and related biomarkers in rats compared to control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!