Methods Mol Biol
Department of Chemistry, University of Minnesota, Minneapolis, MN, USA.
Published: February 2014
Antimicrobial peptides (AMPs) provide a primordial source of immunity, conferring upon eukaryotic cells resistance against bacteria, protozoa, and viruses. Despite a few examples of anionic peptides, AMPs are usually relatively short positively charged polypeptides, consisting of a dozen to about a hundred amino acids, and exhibiting amphipathic character. Despite significant differences in their primary and secondary structures, all AMPs discovered to date share the ability to interact with cellular membranes, thereby affecting bilayer stability, disrupting membrane organization, and/or forming well-defined pores. AMPs selectively target infectious agents without being susceptible to any of the common pathways by which these acquire resistance, thereby making AMPs prime candidates to provide therapeutic alternatives to conventional drugs. However, the mechanisms of AMP actions are still a matter of intense debate. The structure-function paradigm suggests that a better understanding of how AMPs elicit their biological functions could result from atomic resolution studies of peptide-lipid interactions. In contrast, more strict thermodynamic views preclude any roles for three-dimensional structures. Indeed, the design of selective AMPs based solely on structural parameters has been challenging. In this chapter, we will focus on selected AMPs for which studies on the corresponding AMP-lipid interactions have helped reach an understanding of how AMP effects are mediated. We will emphasize the roles of both liquid- and solid-state NMR spectroscopy for elucidating the mechanisms of action of AMPs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988059 | PMC |
http://dx.doi.org/10.1007/978-1-62703-583-5_9 | DOI Listing |
J Clin Med
January 2025
Department of Anatomy, Jagiellonian University Medical College, 33-332 Cracow, Poland.
: Excessive body fatness is the basis of many diseases, especially civilization-related ones. The aim of this study is to analyze the body composition and serum levels of selected antimicrobial peptides (AMPs) in patients with basal cell carcinoma (BCC), in comparison to healthy controls (HCs), and investigate whether any specific parameter significantly increases the risk of BCC development. : The body composition and measurements of serum levels of cathelicidin and human-beta-defensin-2 were analyzed in a group of 100 subjects (50 patients with BCC and 50 HCs).
View Article and Find Full Text PDFMicroorganisms
January 2025
CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
The intensification of aquaculture has escalated disease outbreaks and overuse of antibiotics, driving the global antimicrobial resistance (AMR) crisis. Antimicrobial peptides (AMPs) provide a promising alternative due to their rapid, broad-spectrum activity, low AMR risk, and additional bioactivities, including immunomodulatory, anticancer, and antifouling properties. AMPs derived from aquatic invertebrates, particularly marine-derived, are well-suited for aquaculture, offering enhanced stability in high-salinity environments.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China.
High-precision, low-power MEMS accelerometers are extensively utilized across civilian applications. Closed-loop accelerometers employing switched-capacitor (SC) circuit topologies offer notable advantages, including low power consumption, high signal-to-noise ratio (SNR), and excellent linearity. Addressing the critical demand for high-precision, low-power MEMS accelerometers in modern geophones, this work focuses on the design and implementation of closed-loop interface ASICs (Application-Specific Integrated Circuits).
View Article and Find Full Text PDFAntibiotics (Basel)
January 2025
School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
Antimicrobial resistance is a critical global challenge in the 21st century, validating Sir Alexander Fleming's warning about the misuse of antibiotics leading to resistant microbes. With a dwindling arsenal of effective antibiotics, it is imperative to concentrate on alternative antimicrobial strategies. Previous studies have not comprehensively discussed the advantages and limitations of various strategies, including bacteriophage therapy, probiotics, immunotherapies, photodynamic therapy, essential oils, nanoparticles and antimicrobial peptides (AMPs) within a single review.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy.
In an era dominated by the phenomenon of antibiotic resistance, it is increasingly important to look for alternatives to synthetic antibiotics. In light of these considerations, the synergistic use of essential oils and Antimicrobial Peptides (AMPs) seems a viable strategy. In this study, we assessed the Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Fractional Inhibitory Concentration (FIC) of three Essential Oils (EOs): winter savory (), bergamot () and cinnamon () and of the insect antimicrobial peptide Cecropin A (CecA), alone and in combination with EOs, against two Gram-negative ATCC bacterial strains: and serovar Typhimurium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.