Increased levels of platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) are found in several inflammatory dermatoses, but PAF's exact role in epidermis is uncertain. In order to better understand the physiological consequences of excess PAF production in epidermis, we examined the gene regulatory effects of PAF short-term stimulation in differentiated HaCaT keratinocytes by transcriptional profiling. Even though PAF induces COX2 expression, we found that PAF regulates only few genes associated with inflammation in differentiated keratinocytes. Rather, we show that natural PAF rapidly regulates genes involved in proliferation, (anti)-apoptosis and migration, all sub-processes of re-epithelialization and wound healing. Moreover, profiling of phosphorylated kinases, cellular wound-scratch experiments, resazurin assay and flow cytometry cell cycle phase analysis all support a role for PAF in keratinocyte proliferation and epidermal re-epithelialization. In conclusion, these results suggest that PAF acts as an activator of proliferation and may, therefore, function as a connector between inflammation and proliferation in differentiated keratinocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-013-1784-6DOI Listing

Publication Analysis

Top Keywords

differentiated keratinocytes
12
platelet-activating factor
8
proliferation differentiated
8
paf
8
regulates genes
8
proliferation
5
factor induces
4
induces proliferation
4
differentiated
4
keratinocytes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!