Hierarchical patterns of three-dimensional block-copolymer films formed by electrohydrodynamic jet printing and self-assembly.

Nat Nanotechnol

Department of Materials Science and Engineering, Beckman Institute, and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

Published: September 2013

Self-assembly of block-copolymers provides a route to the fabrication of small (size, <50 nm) and dense (pitch, <100 nm) features with an accuracy that approaches even the demanding specifications for nanomanufacturing set by the semiconductor industry. A key requirement for practical applications, however, is a rapid, high-resolution method for patterning block-copolymers with different molecular weights and compositions across a wafer surface, with complex geometries and diverse feature sizes. Here we demonstrate that an ultrahigh-resolution jet printing technique that exploits electrohydrodynamic effects can pattern large areas with block-copolymers based on poly(styrene-block-methyl methacrylate) with various molecular weights and compositions. The printed geometries have diameters and linewidths in the sub-500 nm range, line edge roughness as small as ∼45 nm, and thickness uniformity and repeatability that can approach molecular length scales (∼2 nm). Upon thermal annealing on bare, or chemically or topographically structured substrates, such printed patterns yield nanodomains of block-copolymers with well-defined sizes, periodicities and morphologies, in overall layouts that span dimensions from the scale of nanometres (with sizes continuously tunable between 13 nm and 20 nm) to centimetres. As well as its engineering relevance, this methodology enables systematic studies of unusual behaviours of block-copolymers in geometrically confined films.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nnano.2013.160DOI Listing

Publication Analysis

Top Keywords

hierarchical patterns
4
patterns three-dimensional
4
three-dimensional block-copolymer
4
block-copolymer films
4
films formed
4
formed electrohydrodynamic
4
electrohydrodynamic jet
4
jet printing
4
printing self-assembly
4
self-assembly self-assembly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!