POCIS (polar organic chemical integrative samplers) are increasingly used for sampling polar compounds. Although very efficient for a wide range of pollutants, the classic configuration of the device has a number of limitations, in particular for the sampling of highly polar analytes and hydrophobic compounds. This study presents a new version of the POCIS passive sampler which uses a highly porous Nylon membrane of 30 μm pore size, enabling the sampling of hydrophobic pollutants and improving the accumulation rate of other pollutants. This newly designed tool and the classic POCIS were both tested during a laboratory experiment to evaluate the accumulation kinetics of a selection of pesticides and pharmaceuticals. The observed results show unexpected accumulation kinetics for the new version of POCIS. To explain the data, the use of an intraparticulate diffusion model was required, which also enabled us to propose another explanation of the burst effect observed with the classic POCIS, primarily related to the potential wetting of the device as the first step in the accumulation of compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-013-7286-2DOI Listing

Publication Analysis

Top Keywords

polar organic
8
organic chemical
8
chemical integrative
8
integrative samplers
8
version pocis
8
classic pocis
8
accumulation kinetics
8
pocis
5
development adapted
4
adapted version
4

Similar Publications

Visible-light absorbing metal-free organic dyes are of increasing demand for various optoelectronic applications because of their great structure-function tunability through chemical means. Several dyes also show huge potential in triplet photosensitization, generating reactive singlet oxygen. Understanding the structure-property relationships of many well-known fluorescein dyes is of paramount importance in designing next-generation energy efficient dyes, which is currently limited.

View Article and Find Full Text PDF

Lead halide perovskites have garnered interest in light-emitting diode (LED) applications due to their strong emission and tunable properties. However, conventional synthesis methods involve energy-intensive thermal processes and hazardous organic solvents, raising environmental concerns. In this study, we report a simple and eco-friendly mechanochemical approach that produces phase-pure blue-emitting CsCuI (emission at 440 nm) and yellow-emitting CsCuI (emission at 570 nm) phosphors through polarity modulation and control of grinding duration.

View Article and Find Full Text PDF

Understanding the interplay between the molecular structure of the ionic liquid (IL) subunit, the resulting nanostructure and ion transport in polymerized ionic liquids (PILs) is necessary for the realization of high-performance solid-state electrolytes required in various advanced applications. Herein, we present a detailed structural characterization of a recently synthesized series of acrylate-based PIL homopolymers and networks with imidazolium cations and chloride anions with varying alkyl spacer and terminal group lengths designed for organic solid-state batteries based on X-ray scattering. The impact of the concentrations of both the crosslinker and added tetrabutylammonium chloride (TBACl) conducting salt on the structural characteristics is also investigated.

View Article and Find Full Text PDF

Dynamic Kinetic Activation of Aziridines Enables Radical-Polar Crossover (4 + 3) Cycloaddition with 1,3-Dienes.

J Am Chem Soc

January 2025

State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.

The cycloaddition of aziridines with unsaturated compounds is a valuable method for synthesizing nitrogen heterocycles. However, this process is predominantly substrate-controlled, posing significant challenges in regulating the regioselectivity of the C-N bond cleavage. In this study, we report a nickel-catalyzed dynamic kinetic activation strategy that enables catalyst-controlled activation of aziridines.

View Article and Find Full Text PDF

Designing dicationic organic salts and ionic liquids exhibiting high fluorescence in the solid state.

J Ion Liq

December 2024

Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, NV 89154, United States.

Dicationic ionic liquids (DILs) are emerging as a powerful, next-generation approach to designing applied ILs because of their superior physicochemical properties as well as their diverse complexity and tunability for task specific applications. DILs are scarce in the literature compared to monocationic ILs (MILs), and one of their main issues is their expected tendency to possess higher melting temperatures. A series of 1,4-bis[2-(4-pyridyl)ethenyl] benzene and 1,4-bis[2-(2-pyridyl)ethenyl]benzene quaternary salts (Q-BPEBs) with different counterions (bromide, tosylate, and triflimide) and carbon chain lengths (C, C, and C) have been synthesized for their potential as DILs with strong photoluminescent properties in the solid state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!