Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems.

Nat Mater

Ira A. Fulton School of Engineering, Arizona State University, Tempe, Arizona 85281, USA.

Published: December 2013

Dealloying, the selective dissolution of one or more of the elemental components of an alloy, is an important corrosion mechanism and a technologically relevant process used to fabricate nanoporous metals for a variety of applications including catalysis, sensing, actuation, supercapacitors and radiation-damage-resistant materials. In noble-metal alloy systems for which the ambient-temperature solid-state diffusivity is minuscule, dealloying occurs at a composition-dependent critical potential above which bicontinuous nanoporous structures evolve and below which a full-coverage layer of the more-noble component forms causing the alloy surface to become passive. In contrast, for alloy systems exhibiting significant solid-state diffusive transport, our understanding of dealloying-induced morphologies and the electrochemical parameters controlling this are largely unexplored. Here, we examine dealloying of Li from Li-Sn alloys and show that depending on alloy composition, particle size and dealloying rate, all known dealloyed morphologies evolve including bicontinuous nanoporous structures and hollow core-shell particles. Furthermore, we elucidate the role of bulk diffusion in morphology evolution using chronopotentiometry and linear sweep voltammetry. Our results may have implications for lithium-ion battery development while significantly broadening the spectrum of strategies for obtaining new nanoporous materials through dealloying.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nmat3741DOI Listing

Publication Analysis

Top Keywords

alloy systems
8
bicontinuous nanoporous
8
nanoporous structures
8
dealloying
5
alloy
5
spontaneous evolution
4
evolution bicontinuous
4
bicontinuous nanostructures
4
nanostructures dealloyed
4
dealloyed li-based
4

Similar Publications

Dissolution Mechanism of YbOF in (LiF-CaF) Molten Salt.

Molecules

January 2025

School of Metallurgical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.

The dissolution mechanism of YbOF in a fluoride-containing (LiF-CaF) molten salt is the basis for analyzing the structure of the resulting medium and optimizing the electrolytic preparation of rare-earth Yb alloys. In this study, isothermal saturation was used to analyze solubility changes of YbOF in the (LiF-CaF). system.

View Article and Find Full Text PDF

The corrosion of low-alloy steel in ethanolamine solution, simulating steam generator chemistry, is studied by in situ chronopotentiometry and electrochemical impedance spectroscopy combined with ex situ analysis of the obtained oxide films and model calculations. Hydrodynamic calculations of the proposed setup to study flow-assisted corrosion demonstrate that turbulent conditions are achieved. Quantum chemical calculations indicate the adsorption orientation of ethanolamine on the oxide surface.

View Article and Find Full Text PDF

This paper presents a comprehensive study of two tool materials designed for the machining of Inconel 718 superalloy, produced through two distinct sintering techniques: High Pressure-High Temperature (HPHT) sintering and Spark Plasma Sintering (SPS). The first composite (marked as BNT), composed of 65 vol% cubic boron nitride (cBN), was sintered from the cBN-TiN-TiSiC system using the HPHT technique at a pressure of 7.7 GPa.

View Article and Find Full Text PDF

Titanium Oxide Formation in TiCoCrFeMn High-Entropy Alloys.

Materials (Basel)

January 2025

Faculty of Advanced Technologies and Chemistry, Military University of Technology, Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland.

High-entropy materials, characterized by complex chemical compositions, are difficult to identify and describe structurally. These problems are encountered at the composition design stage when choosing an effective method for predicting the final phase structure of the alloy, which affects its functional properties. In this work, the effects of introducing oxide precipitates into the matrix of a high-entropy TiCoCrFeMn alloy to strengthen ceramic particles were studied.

View Article and Find Full Text PDF

Infections continue to pose significant challenges in dentistry, necessitating the development of innovative solutions that can effectively address these issues. This study focuses on creating coatings made from polymethyl methacrylate (PMMA) enriched with zinc oxide-silver composite nanoparticles, layered to Ti6Al4V-titanium alloy substrates. The application of these materials aims to create a solution for the abutments utilized in complete dental implant systems, representing the area most susceptible to bacterial infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!