A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluating combinational illumination estimation methods on real-world images. | LitMetric

Illumination estimation is an important component of color constancy and automatic white balancing. A number of methods of combining illumination estimates obtained from multiple subordinate illumination estimation methods now appear in the literature. These combinational methods aim to provide better illumination estimates by fusing the information embedded in the subordinate solutions. The existing combinational methods are surveyed and analyzed here with the goals of determining: 1) the effectiveness of fusing illumination estimates from multiple subordinate methods; 2) the best method of combination; 3) the underlying factors that affect the performance of a combinational method; and 4) the effectiveness of combination for illumination estimation in multiple-illuminant scenes. The various combinational methods are categorized in terms of whether or not they require supervised training and whether or not they rely on high-level scene content cues (e.g., indoor versus outdoor). Extensive tests and enhanced analyzes using three data sets of real-world images are conducted. For consistency in testing, the images were labeled according to their high-level features (3D stages, indoor/outdoor) and this label data is made available on-line. The tests reveal that the trained combinational methods (direct combination by support vector regression in particular) clearly outperform both the non-combinational methods and those combinational methods based on scene content cues.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2013.2277943DOI Listing

Publication Analysis

Top Keywords

combinational methods
20
illumination estimation
16
illumination estimates
12
methods
10
estimation methods
8
real-world images
8
estimates multiple
8
multiple subordinate
8
scene content
8
content cues
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!