Multimodal delivery of irinotecan from microparticles with two distinct compartments.

J Control Release

Department of Biomedical Engineering, University of Michigan, Ann Arbor 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor 48109, USA. Electronic address:

Published: November 2013

In the last several decades, research in the field of drug delivery has been challenged with the fabrication of carrier systems engineered to deliver therapeutics to the target site with sustained and controlled release kinetics. Herein, we report the fabrication of microparticles composed of two distinct compartments: i) one compartment containing a pH responsive polymer, acetal-modified dextran, and PLGA (polylactide-co-glycolide), and ii) one compartment composed entirely of PLGA. We demonstrate the complete release of dextran from the microparticles during a 10-hour period in an acidic pH environment and the complete degradation of one compartment in less than 24h. This is in congruence with the stability of the same microparticles in neutral pH over the 24-hour period. Such microparticles can be used as pH responsive carrier systems for drug delivery applications where their cargo will only be released when the optimum pH window is reached. The feasibility of the microparticle system for such an application was confirmed by encapsulating a cancer therapeutic, irinotecan, in the compartment containing the acetal-modified dextran polymer and the pH dependent release over a 5-day period was studied. It was found that upon pH change to an acidic environment, over 50% of the drug was first released at a rapid rate for 10h, similar to that observed for the dextran release, before continuing at a more controlled rate for 4 days. As such, these microparticles can play an important role in the fabrication of novel drug delivery systems due to the selective, controlled, and pH responsive release of their encapsulated therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550899PMC
http://dx.doi.org/10.1016/j.jconrel.2013.08.017DOI Listing

Publication Analysis

Top Keywords

drug delivery
12
distinct compartments
8
carrier systems
8
acetal-modified dextran
8
acidic environment
8
microparticles
6
release
5
multimodal delivery
4
delivery irinotecan
4
irinotecan microparticles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!