MutS functions in mismatch repair (MMR) to scan DNA for errors, identify a target site and trigger subsequent events in the pathway leading to error removal and DNA re-synthesis. These actions, enabled by the ATPase activity of MutS, are now beginning to be analyzed from the perspective of the protein itself. This study provides the first ensemble transient kinetic data on MutS conformational dynamics as it works with DNA and ATP in MMR. Using a combination of fluorescence probes (on Thermus aquaticus MutS and DNA) and signals (intensity, anisotropy and resonance energy transfer), we have monitored the timing of key conformational changes in MutS that are coupled to mismatch binding and recognition, ATP binding and hydrolysis, as well as sliding clamp formation and signaling of repair. Significant findings include (a) a slow step that follows weak initial interaction between MutS and DNA, in which concerted conformational changes in both macromolecules control mismatch recognition, and (b) rapid, binary switching of MutS conformations that is concerted with ATP binding and hydrolysis and (c) is stalled after mismatch recognition to control formation of the ATP-bound MutS sliding clamp. These rate-limiting pre- and post-mismatch recognition events outline the mechanism of action of MutS on DNA during initiation of MMR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812353 | PMC |
http://dx.doi.org/10.1016/j.jmb.2013.08.011 | DOI Listing |
Sci Rep
January 2025
Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
Lung cancer (LC) is a crucial rapidly developing disease. In Egypt, it is one of the five most frequent cancers. Little is known about the impact of deleted mismatch repair genes and its correlation to clinicopathological characteristics.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Gastroenterology, Shanxi Hospital Affiliated to Cancer Hospital, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan City, 030013, Shanxi Province, China.
The mismatch repair (MMR) system plays a crucial role in the maintenance of DNA replication fidelity and genomic stability. The clinical value of the MMR molecular marker as an immunotherapy for advanced solid tumors has been documented. However, this therapy is not effective in some patients.
View Article and Find Full Text PDFDNA Repair (Amst)
December 2024
Agriculture and Marine Science Program, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan; Agricultural Science, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan. Electronic address:
Most giant viruses including Mimiviridae family build large viral factories within the host cytoplasms. These giant viruses are presumed to possess specific genes that enable the rapid and massive replication of their large double-stranded DNA genomes within viral factories. It has been revealed that a functionally uncharacterized protein, MutS7, is expressed during the operational phase of the viral factory.
View Article and Find Full Text PDFBiotechnol Lett
December 2024
Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, No.1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu, People's Republic of China.
Recombineering (recombination-mediated genetic engineering) is a powerful strategy for bacterial genomic DNA and plasmid DNA modifications. CoS-MAGE improved over MAGE (multiplex automated genome engineering) by co-electroporation of an antibiotic resistance repair oligo along with the oligos for modification of the Escherichia coli chromosome. After several cycles of recombineering, the sub-population of mutants were selected among the antibiotic resistant colonies.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Department of Chemistry, Temple University, 1901 N. 13th St. Philadelphia, PA 19122, USA.
In eukaryotic post-replicative mismatch repair, MutS homolog complexes detect mismatches and in the major eukaryotic pathway, recruit Mlh1-Pms1/MLH1-PMS2 (yeast/human) complexes, which nick the newly replicated DNA strand upon activation by the replication processivity clamp, PCNA. This incision enables mismatch removal and DNA repair. Beyond its endonuclease role, Mlh1-Pms1/MLH1-PMS2 also has ATPase activity, which genetic studies suggest is essential for mismatch repair, although its precise regulatory role on DNA remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!