Cyanobacterial toxins and pesticides regularly impact freshwaters. Microcystin-LR is one of the most toxic and common cyanobacterial toxins whereas glyphosate is the active ingredient of a widely use herbicide. As filter feeders, freshwater mussels are particularly exposed. Like many native bivalve species, Unio pictorum suffers from a continuous decline in Europe. In order to get a deeper insight of its response to contaminants, U. pictorum was exposed to either 10 μg L(-1) of microcystin-LR or 10 μg L(-1) of glyphosate or a mixture of both. Proteins of the digestive glands were extracted and analyzed by DIGE. Gel analysis revealed 103 spots with statistical variations, and the response seems to be less toward glyphosate than to microcystin-LR. Specific spots have variations only when exposed to the mixture, showing that there is an interaction of both contaminants in the responses triggered. The proteins of 30 spots have been identified. They belong mostly to the cytoskeleton family, but proteins of the oxidative pathway, detoxification, and energetic metabolism were affected either by glyphosate or microcystin-LR or by the mixture. These results demonstrate the importance to study contaminants at low concentrations representative of those found in the field and that multicontaminations can lead to different response pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr4006316DOI Listing

Publication Analysis

Top Keywords

glyphosate microcystin-lr
12
unio pictorum
8
cyanobacterial toxins
8
μg l-1
8
glyphosate
5
microcystin-lr
5
specific proteomic
4
response
4
proteomic response
4
response unio
4

Similar Publications

Microcystin-LR (MC-LR) and glyphosate (GLY) have been classified as a Group 2B and Group 2A carcinogens for humans, respectively, and frequently found in aquatic ecosystems. However, data on the potential hazard of MC-LR and GLY exposure to the fish gut are relatively scarce. In the current study, a subacute toxicity test of zebrafish exposed to MC-LR (35 μg L) and GLY (3.

View Article and Find Full Text PDF

Cyanobacterial blooms and their associated toxins are growing issues for many aquatic ecosystems. Microcystin-LR (MC-LR) is a toxic and common cyanobacterial toxin, whereas glyphosate is a commonly used herbicide that is massively applied in agriculture. In this study, the effects of glyphosate on the growth of Microcystis aeruginosa and MC-LR synthesis and release from M.

View Article and Find Full Text PDF

Effects of light, microorganisms, farming chemicals and water content on the degradation of microcystin-LR in agricultural soils.

Ecotoxicol Environ Saf

July 2018

State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China. Electronic address:

An experiment was conducted to investigate the effect of farming activities on microcystin-LR (MC-LR) degradation in soils. Three farming activities were assessed: 1) fertilization via addition of different nitrogen sources and organic matter; 2) pesticide application by addition of different commercial pesticides; and 3) irrigation by addition of different amount of water. The contribution of the two major degradation processes of MC-LR in soils, photodegradation and biodegradation, were also evaluated.

View Article and Find Full Text PDF

The use of glyphosate, which is a well-known sterilant herbicide, has been growing rapidly because the area under the cultivation of genetically modified crops that are tolerant to this herbicide has increased. Glyphosate can enter into aquatic systems through many different ways. However, information on the potential risks of glyphosate at environmentally relevant levels to aquatic systems is still limited.

View Article and Find Full Text PDF

Cyanobacterial toxins and pesticides regularly impact freshwaters. Microcystin-LR is one of the most toxic and common cyanobacterial toxins whereas glyphosate is the active ingredient of a widely use herbicide. As filter feeders, freshwater mussels are particularly exposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!