Since the 2001 anthrax attack in the United States, awareness of threats originating from bioterrorism has grown. This led internationally to increased research efforts to improve knowledge of and approaches to protecting human and animal populations against the threat from such attacks. A collaborative effort in this context is the extension of the open-source Spatiotemporal Epidemiological Modeler (STEM) simulation and modeling software for agro- or bioterrorist crisis scenarios. STEM, originally designed to enable community-driven public health disease models and simulations, was extended with new features that enable integration of proprietary data as well as visualization of agent spread along supply and production chains. STEM now provides a fully developed open-source software infrastructure supporting critical modeling tasks such as ad hoc model generation, parameter estimation, simulation of scenario evolution, estimation of effects of mitigation or management measures, and documentation. This open-source software resource can be used free of charge. Additionally, STEM provides critical features like built-in worldwide data on administrative boundaries, transportation networks, or environmental conditions (eg, rainfall, temperature, elevation, vegetation). Users can easily combine their own confidential data with built-in public data to create customized models of desired resolution. STEM also supports collaborative and joint efforts in crisis situations by extended import and export functionalities. In this article we demonstrate specifically those new software features implemented to accomplish STEM application in agro- or bioterrorist crisis scenarios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/bsp.2012.0071 | DOI Listing |
Sci Rep
December 2024
School of Electrical Engineering, Vellore Institute of Technology, Chennai, 600127, India.
Spherical tanks have been predominantly used in process industries due to their large storage capability. The fundamental challenges in process industries require a very efficient controller to control the various process parameters owing to their nonlinear behavior. The current research work in this paper aims to propose the Approximate Generalized Time Moments (AGTM) optimization technique for designing Fractional-Order PI (FOPI) and Fractional-Order PID (FOPID) controllers for the nonlinear Single Spherical Tank Liquid Level System (SSTLLS).
View Article and Find Full Text PDFIn this paper, we studied the diffusion characteristics and distribution patterns of gas leakage in soil from buried natural gas pipelines. The three-dimensional simulation model of buried natural gas pipeline leakage was established using Fluent software. Monitoring points of gas leakage mole fraction were set up at different locations, and the influence of buried depth and pressure factors on the mole fraction and diffusion of leaked gas was analyzed.
View Article and Find Full Text PDFSci Rep
December 2024
School of Physical Education, Shanghai University of Sport, Shanghai, 200438, China.
Objective: This study aimed to examine the levels of physical activity (PA), sleep, and mental health (MH), specifically depression, anxiety, and stress, among Chinese university students. It also aimed to analyze the influencing factors of MH, providing a theoretical foundation for developing intervention programs to improve college students' mental health.
Methods: A stratified, clustered, and phased sampling method was employed.
Sci Rep
December 2024
School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, 47500, Selangor Darul Ehsan, Malaysia.
Cervical cancer is a deadly disease in women globally. There is a greater chance of getting rid of cervical cancer in case of earliest diagnosis. But for some patients, there is a chance of recurrence.
View Article and Find Full Text PDFSci Rep
December 2024
Imperial College London, London, UK.
Accurate estimation of the soil resilient modulus (M) is essential for designing and monitoring pavements. However, experimental methods tend to be time-consuming and costly; regression equations and constitutive models usually have limited applications, while the predictive accuracy of some machine learning studies still has room for improvement. To forecast M efficiently and accurately, a new model named black-winged kite algorithm-extreme gradient boosting (BKA-XGBOOST) is proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!