'Alarmins' are a group of endogenous proteins or molecules that are released from cells during cellular demise to alert the host innate immune system. Two of them, high-mobility group box-1 (HMGB1) and IL-33 shared many similarities of cellular localization, functions and involvement in various inflammatory diseases including systemic lupus erythematosus (SLE). The expressions of HMGB1 and IL-33, and their corresponding receptors RAGE (receptor for advanced glycation end products) and ST2, respectively, are substantially upregulated in patients with lupus nephritis (LN). This review highlights the emerging roles of alarmin proteins in various pathologies of LN, by focusing on classical HMGB1 and a newly discovered alarmin IL-33.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1586/1744666X.2013.814428 | DOI Listing |
J Transl Med
December 2024
Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
Background: Aberrant alternative splicing (AS) contributes to tumor progression. A crucial component of AS is cleavage and polyadenylation specificity factor 4 (CPSF4). It remains unclear whether CPSF4 plays a role in triple-negative breast cancer (TNBC) progression through AS regulation.
View Article and Find Full Text PDFCancer Genomics Proteomics
December 2024
Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand;
Background/aim: Cholangiocarcinoma (CCA) is an epithelial malignancy that is most prevalent in Southeast Asia, particularly in the northeast of Thailand. Identifying and establishing specific biomarkers of CCA is crucial for ensuring accurate prognosis and enabling effective treatment. High-mobility group box 1 (HMGB1) is a damage-associated molecular pattern (DAMP) molecule that can be released by dead or injured cells and is associated with tumor progression.
View Article and Find Full Text PDFTissue Cell
December 2024
Department of Anatomy and Embryology, Faculty of Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt.
Muscle and tendon injuries are prevalent occurrences during sports activities. Platelet-rich plasma (PRP) is known for its rich content of factors essential for wound healing, inflammation reduction, and tissue repair. Despite its recognized benefits, limited information is available regarding PRP's effectiveness in addressing combined surgical injuries to the gastrocnemius muscle and Achilles tendon.
View Article and Find Full Text PDFZhongguo Dang Dai Er Ke Za Zhi
December 2024
Children's Medical Center, Xiangya Hospital, Central South University, Changsha 410008, China.
Objectives: To explore the mechanism by which Wiskott-Aldrich syndrome protein family verprolin-homologous protein 1 (WAVE1) regulates lipopolysaccharide (LPS)-induced mitochondrial metabolic abnormalities and inflammatory responses in macrophages.
Methods: Macrophage cell lines with overexpressed WAVE1 (mouse BMDM and human THP1 cells) were prepared. The macrophages were treated with LPS (500 ng/mL) to simulate sepsis-induced inflammatory responses.
Ann Ital Chir
December 2024
Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225002 Yangzhou, Jiangsu, China.
Aim: Intraoperative lung-protective ventilation strategies (LPVS) have been shown to improve lung oxygenation and prevent postoperative pulmonary problems in surgical patients. However, the application of positive end-expiratory pressure (PEEP)-based LPVS in emergency traumatic brain injury (TBI) has not been thoroughly explored. The purpose of this study is to evaluate the effects of drive pressure-guided individualized PEEP on perioperative pulmonary oxygenation, postoperative pulmonary complications, and recovery from neurological injury in patients with TBI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!