Object: The authors sought to identify novel biomarkers for early detection of neural tube defects (NTDs) in human fetuses.

Methods: Amniotic fluid and serum were drawn from women in the second trimester of pregnancy. The study group included 2 women pregnant with normal fetuses and 4 with fetuses displaying myelomeningocele (n = 1), anencephaly (n = 1), holoprosencephaly (n = 1), or encephalocele (n = 1). Amniotic fluid stem cells (AFSCs) were isolated and cultured. The cells were immunostained for the stem cell markers Oct4, CD133, and Sox2; the epigenetic biomarkers H3K4me2, H3K4me3, H3K27me2, H3K27me3, H3K9Ac, and H3K18Ac; and the histone modifiers KDM6B (a histone H3K27 demethylase) and Gcn5 (a histone acetyltransferase). The levels of 2 markers for neural tube development, bone morphogenetic protein-4 (BMP4) and sonic hedgehog (Shh), were measured in amniotic fluid and serum using an enzyme-linked immunosorbent assay.

Results: The AFSCs from the woman pregnant with a fetus affected by myelomeningocele had higher levels of H3K4me2, H3K4me3, H3K27me2, and H3K27me3 and lower levels of KDM6B than the AFSCs from the women with healthy fetuses. The levels of H3K9ac, H3K18ac, and Gcn5 were also decreased in the woman with the fetus exhibiting myelomeningocele. In AFSCs from the woman carrying an anencephalic fetus, levels of H3K27me3, along with those of H3K9Ac, H3K18ac, and Gcn5, were increased, while that of KDM6B was decreased. Compared with the normal controls, the levels of BMP4 in amniotic fluid and serum from the woman with a fetus with myelomeningocele were increased, whereas levels of Shh were increased in the woman pregnant with a fetus displaying anencephaly.

Conclusions: The levels of epigenetic marks, such as H3K4me, H3K27me3, H3K9Ac, and H3K18A, in cultured AFSCs in combination with levels of key developmental proteins, such as BMP4 and Shh, are potential biomarkers for early detection and identification of NTDs in amniotic fluid and maternal serum.

Download full-text PDF

Source
http://dx.doi.org/10.3171/2013.7.PEDS12636DOI Listing

Publication Analysis

Top Keywords

amniotic fluid
24
fluid serum
16
neural tube
12
h3k27me3 h3k9ac
12
h3k9ac h3k18ac
12
levels
9
myelomeningocele anencephaly
8
biomarkers early
8
early detection
8
h3k4me2 h3k4me3
8

Similar Publications

Amniotic Fluid as a Potential Treatment for Vocal Fold Scar in a Rabbit Model.

J Voice

January 2025

Department of Otolaryngology - Head and Neck Surgery, University of Utah, Salt Lake City, UT; Department of Surgery, University Utah, Salt Lake City, UT.

Objectives/hypothesis: Vocal fold (VF) injury and chronic inflammation can progress to scarring, which is notoriously difficult to treat. Human amniotic fluid (AF) has potential for VF wound healing in a rabbit model, and we hypothesized that AF would demonstrate wound healing properties superior to hyaluronic acid (HA) over time.

Study Design: Randomized, controlled trial.

View Article and Find Full Text PDF

Purpose: The aim of the present study was to establish a SYBR Green-based real-time PCR assay for detection of the Nc5 segment from the Neospora caninum genome.

Methods: The oligonucleotides sequences targeting the Nc5 gene previously reported and designed in-house were validated. Two Primer sets were evaluated and tested in four different combinations.

View Article and Find Full Text PDF

Amniotic fluid (AF)-derived exosomal miRNA have been explored as potential contributors to the pathogenesis of Tetralogy of Fallot (TOF). This study aimed to investigate the expression profiles of AF-derived exosomal miRNAs and their potential contribution to TOF development. Exosomes were isolated from AF samples obtained from pregnant women carrying fetuses diagnosed with TOF.

View Article and Find Full Text PDF

Prenatal toxicity of L-mimosine in Wistar rats.

Toxicon

December 2024

Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, S.P., Brazil; Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (ICAQF-UNIFESP), Diadema, S.P., Brazil. Electronic address:

L-Mimosine is the main active component of the plant Leucaena leucocephala. Due to its metal-chelating mechanism, it interacts with various metabolic pathways in living organisms, making it a potential pharmacological target, although it also leads to toxicity. The present study aimed to investigate the transplacental passage of L-mimosine and its effects on embryofetal development.

View Article and Find Full Text PDF

Introduction: The chicken egg, with its compartments, is a widely used and popular animal model in experimental studies. This study aimed to quantify the volumes of the yolk/yolk sac, amniotic fluid, and chicken embryo using non-invasive ultra-high-field magnetic resonance imaging (UHF-MRI).

Materials And Methods: In total, 64 chicken eggs were examined using a 7 T UHF-MRI scanner, acquiring T2-weighted anatomical images of the entire egg from developmental day 1 to 16 (D1-D16).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!