Adiabatic quantum motors.

Phys Rev Lett

Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany.

Published: August 2013

When parameters are varied periodically, charge can be pumped through a mesoscopic conductor without applied bias. Here, we consider the inverse effect in which a transport current drives a periodic variation of an adiabatic degree of freedom. This provides a general operating principle for adiabatic quantum motors which we discuss here in general terms. We relate the work performed per cycle on the motor degree of freedom to characteristics of the underlying quantum pump and discuss the motors' efficiency. Quantum motors based on chaotic quantum dots operate solely due to quantum interference, and motors based on Thouless pumps have ideal efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.111.060802DOI Listing

Publication Analysis

Top Keywords

quantum motors
12
adiabatic quantum
8
degree freedom
8
motors based
8
quantum
5
motors
4
motors parameters
4
parameters varied
4
varied periodically
4
periodically charge
4

Similar Publications

Background And Objectives: A previous postmortem study of men with Christianson syndrome, a disorder caused by loss-of-function mutations in the gene , reported a mechanistic link between pathologic tau accumulation and progressive symptoms such as cerebellar atrophy and cognitive decline. This study aimed to characterize the relationships between neuropathologic manifestations and tau accumulation in heterozygous women with mutation.

Methods: We conducted a multimodal neuroimaging and plasma biomarker study on 3 middle-aged heterozygous women with mutations (proband 1: mid-50s; proband 2: early 50s; proband 3: mid-40s) presenting with progressive extrapyramidal symptoms.

View Article and Find Full Text PDF

QOMIC: quantum optimization for motif identification.

Bioinform Adv

December 2024

Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, United States.

Motivation: Network motif identification (MI) problem aims to find topological patterns in biological networks. Identifying disjoint motifs is a computationally challenging problem using classical computers. Quantum computers enable solving high complexity problems which do not scale using classical computers.

View Article and Find Full Text PDF

The widespread application of quantum dots (QDs) in recent years has raised concerns about potential environmental and human health risks. Although the toxicity of cadmium telluride quantum dots (CdTe QDs) has been partially studied, their effects on stem cells, tissue regeneration, neurodevelopment, and neurobehavioral toxicity remain unclear. This study aimed to investigate the combined toxic effects and mechanisms of CdTe QDs on planarians at the individual, tissue, cellular, and molecular levels.

View Article and Find Full Text PDF

Neuronal activity in the highly organized networks of the central nervous system is the vital basis for various functional processes, such as perception, motor control, and cognition. Understanding interneuronal connectivity and how activity is regulated in the neuronal circuits is crucial for interpreting how the brain works. Multi-electrode arrays (MEAs) are particularly useful for studying the dynamics of neuronal network activity and their development as they allow for real-time, high-throughput measurements of neural activity.

View Article and Find Full Text PDF

Spin coating stands out as the most employed thin-film deposition technique across a variety of scientific fields. Particularly in the past two decades, spin coaters have become increasingly popular due to the emergence of solution-processed semiconductors such as quantum dots and perovskites. However, acquiring commercial spin coaters from reputable suppliers remains a significant financial burden for many laboratories, particularly for smaller research or educational facilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!