Porcine reproductive and respiratory syndrome (PRRS) has become one of the most economically important diseases for the swine industry worldwide. The objective of the study was to determine selected blood antioxidant enzymes (glutathione peroxidase (GPX), superoxide dismutase (SOD)), biochemical and haematological parameters in PRRS positive and negative pigs of three different categories, mainly to test oxidative stress hypothesis in pigs naturally infected with PRRS virus. Ninety PRRS positive and 90 PRRS negative pigs were included in the study. The presence of PRRS was confirmed by serological detection of antibodies against PRRS virus (PRRSV) and detection of PRRS viral RNA by RT-PCR. Pigs were further divided into three groups of 30: piglets just before weaning (weaners), fatteners and finishers. Blood samples for determining selected blood parameters were collected from the vena cava cranialis. Significantly (P < 0.05) higher activities of SOD in weaners and fatteners and of GPX in weaners were determined in PRRS positive pigs than in corresponding groups of PRRS negative pigs. In contrast, significantly (P < 0.05) lower GPX activity was observed in finishers of PRRS positive pigs than in the corresponding group of PRRS negative pigs. Concentrations of serum total protein in PRRS positive weaners and fatteners were significantly (P < 0.05) higher than those found in PRRS negative pigs. Leukopenia was observed in all three groups of PRRS positive pigs. It has been demonstrated, for the first time, that oxidative stress might be increased in PRRSV naturally infected pigs, especially in weaners.

Download full-text PDF

Source
http://dx.doi.org/10.2478/pjvs-2013-0049DOI Listing

Publication Analysis

Top Keywords

prrs positive
24
negative pigs
20
prrs negative
16
prrs
15
pigs
12
naturally infected
12
weaners fatteners
12
positive pigs
12
blood antioxidant
8
antioxidant enzymes
8

Similar Publications

Porcine reproductive and respiratory syndrome virus (PRRSV) remains a major concern for swine health. Isolating PRRSV is essential for identifying infectious viruses and for vaccine formulation. This study evaluated the potential of using tongue fluid (TF) from perinatal piglet mortalities for PRRSV isolation.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV), an important pathogen affecting the pig industry, is an RNA virus with high genetic diversity. In this study, 12,299 clinical samples were collected from northern China during 2021-2023 to investigate the molecular epidemiological characteristics and genetic evolution of PRRSV. All samples were screened using qRT-PCR and further analyzed through gene and whole-genome sequencing.

View Article and Find Full Text PDF

Background: Diagnosis of porcine reproductive and respiratory syndrome virus (PRRSV) infections can be accomplished using various sample types and testing methods.  The objective of this study was to evaluate the feasibility of using air emission samples to detect the onset of PRRSV type 2 infections in growing pigs.

Methods: Air emissions and oral fluid samples were collected from three grow-finish barns, stocked with PRRSV-negative pigs every 2 weeks for 14-20 weeks.

View Article and Find Full Text PDF

Since the first isolation of the porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) BJEU06-1 strain from a Beijing pig farm in 2006, more and more PRRSV-1 isolates have been identified in China. In this study, we performed the routine detection of PRRSV-1 using 1521 clinical samples collected in 12 provinces/cities from February 2022 to May 2024. Only three lung samples from severely diseased piglets collected in January 2024 were detected as PRRSV-1-positive (0.

View Article and Find Full Text PDF

The innate immune system plays a critical role in the rapid recognition and elimination of pathogens through pattern recognition receptors (PRRs). Among these PRRs are the C-type lectins (CTLs) langerin, mannan-binding lectin (MBL), and surfactant protein D (SP-D), which recognize carbohydrate patterns on pathogens. Each represents proteins from different compartments of the body and employs separate effector mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!