Endocrine cells store hormones in concentrated forms (aggregates) in dense-core secretory granules that are released upon appropriate stimulation. Zn(2+) binding to GH through amino acid residues His18, His21, and Glu174 are essential for GH dimerization and might mediate its aggregation and storage in secretory granules. To investigate whether GH-1 gene mutations at these positions interfere with this process, GH secretion and intracellular production were analyzed in GC cells (rat pituitary cell line) transiently expressing wt-GH and/or GH Zn mutant (GH-H18A-H21A-E174A) in forskolin-stimulated vs nonstimulated conditions. Reduced secretion of the mutant variant (alone or coexpressed with wt-GH) compared with wt-GH after forskolin stimulation was observed, whereas an increased intracellular accumulation of GH Zn mutant vs wt-GH correlates with its altered extracellular secretion. Depleting Zn(2+) from culture medium using N,N,N',N'-tetrakis(2-pyridylemethyl)ethylenediamine, a high-affinity Zn(2+) chelator, led to a significant reduction of the stimulated wt-GH secretion. Furthermore, externally added Zn(2+) to culture medium increased intracellular free Zn(2+) levels and recovered wt-GH secretion, suggesting its direct dependence on free Zn(2+) levels after forskolin stimulation. Confocal microscopy analysis of the intracellular secretory pathway of wt-GH and GH Zn mutant indicated that both variants pass through the regulated secretory pathway in a similar manner. Taken together, our data support the hypothesis that loss of affinity of GH to Zn(2+) as well as altering intracellular free Zn(2+) content may interfere with normal GH dimerization (aggregation) and storage of the mutant variant (alone or with wt-GH), which could possibly explain impaired GH secretion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2013-1089 | DOI Listing |
Adv Mater
January 2025
Department of Chemistry, University College London, London, WC1E 7JE, UK.
Long-standing challenges including notorious side reactions at the Zn anode, low Zn anode utilization, and rapid cathode degradation at low current densities hinder the advancement of aqueous zinc-ion batteries (AZIBs). Inspired by the critical role of capping agents in nanomaterials synthesis and bulk crystal growth, a series of capping agents are employed to demonstrate their applicability in AZIBs. Here, it is shown that the preferential adsorption of capping agents on different Zn crystal planes, coordination between capping agents and Zn ions, and interactions with metal oxide cathodes enable preferred Zn (002) deposition, water-deficient Zn ion solvation structure, and a dynamic cathode-electrolyte interface.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Physics, Dalian University of Technology, Dalian 116024, P. R. China.
Gradient porous carbon has become a potential electrode material for energy storage devices, including the aqueous zinc-ion hybrid capacitor (ZIHC). Compared with the sufficient studies on the fabrication of ZIHCs with high electrochemical performance, there is still lack of in-depth understanding of the underlying mechanisms of gradient porous structure for energy storage, especially the synergistic effect of ultramicropores (<1 nm) and micropores (1-2 nm). Here, we report a design principle for the gradient porous carbon structure used for ZIHC based on the data-mining machine learning (ML) method.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen.
The crosstalk of transition metal ions between the metal oxide cathode and Zn anode restricts the practical applications of aqueous zinc-ion batteries (ZIBs). Herein, we propose a decoupled electrolyte (DCE) consisting of a nonaqueous-phase (N-phase) anolyte and an aqueous-phase (A-phase) catholyte to prevent the crosstalk of Mn, thus extending the lifespan of MnO-based ZIBs. Experimental measurements and theoretical modelling verify that trimethyl phosphate (TMP) not only synergistically works with NHCl in the N-phase anolyte to enable fast Zn conduction while blocking Mn diffusion toward anode, but also modifies the Zn solvation structure to suppress the dendrite formation and corrosion on Zn anode.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada. Electronic address:
Copper hexacyanoferrate (CuHCF) demonstrates high working voltage, convenient synthesis methods, and economic benefits. However, capacity decay of CuHCF//Zn full cells is usually observed in aqueous electrolytes due to the dissolution of Cu and Fe, as indicated by the irreversible insertion of Zn ions and the consequent formation of ZnCuHCF. To address these challenges, a cathode-oriented electrolyte engineering design employing a methyl acetate (MA) co-solvent with zinc triflate (Zn(OTf)) salt electrolyte is implemented.
View Article and Find Full Text PDFNat Commun
December 2024
Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
Fast-charging metal-ion batteries are essential for advancing energy storage technologies, but their performance is often limited by the high activation energy (E) required for ion diffusion in solids. Addressing this challenge has been particularly difficult for multivalent ions like Zn. Here, we present an amorphous organic-hybrid vanadium oxide (AOH-VO), featuring one-dimensional chains arranged in a disordered structure with atomic/molecular-level pores for promoting hierarchical ion diffusion pathways and reducing Zn interactions with the solid skeleton.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!