Endoglucanase I from the filamentous fungus Trichoderma reesei catalyses hydrolysis and glycosyl-transfer reactions of cello-oligosaccharides. Initial bond-cleaving frequencies determined with 1-3H-labelled cello-oligosaccharides proved to be substrate-concentration-dependent. Using chromophoric glycosides and analysing the reaction products by h.p.l.c., kinetic data are obtained and, as typical for an endo-type depolymerase, apparent hydrolytic parameters (kcat., kcat./Km) increase steadily as a function of the number of glucose residues. At high substrate concentrations, and for both free cellodextrins and their aromatic glycosides, complex patterns (transfer reactions) are, however, evident. In contrast with the corresponding lactosides and 1-thiocellobiosides, and in conflict with the expected specificity, aromatic 1-O-beta-cellobiosides are apparently hydrolysed at both scissile bonds, yielding the glucoside as one of the main reaction products. Its formation rate is clearly non-hyperbolically related to the substrate concentration and, since the rate of D-glucose formation is substantially lower, strong indications for dismutation reactions (self-transfer) are again obtained. Evidence for transfer reactions catalysed by endoglucanase I further results from experiments using different acceptor and donor substrates. A main transfer product accumulating in a digest containing a chromophoric 1-thioxyloside was isolated and its structure elucidated by proton n.m.r. spectrometry (500 MHz). The beta 1-4 configuration of the newly formed bond was proved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1131706 | PMC |
http://dx.doi.org/10.1042/bj2700251 | DOI Listing |
Rev Soc Bras Med Trop
January 2025
Universidade Federal do Paraná, Departamento de Clínica Médica, Programa de pós-graduação em Medicina Interna e Ciências da Saúde, Curitiba, PR, Brasil.
Cryptococcal disease is the third most common invasive fungal infection in solid organ transplant recipients and is associated with high-morbidity and -mortality rates. Donor-derived Cryptococcus spp. infection typically manifests within the first month post-procedure and has historically been caused by C.
View Article and Find Full Text PDFAnn Bot
January 2025
Theoretical and Experimental Ecology Station, CNRS, Moulis, France.
Background And Aims: It is assumed that trees should adapt their above and belowground organs as they age. However, most studies to date have quantified these trait adjustments in homogeneous forest stands, confounding the effect of stand aging on soil properties and the intrinsic response of trees to aging.
Methods: Here, we examined 11 morphological, architectural, anatomical and mycorrhizal fine root traits of each of the first five orders for 66 Pinus koraiensis individuals of 16 to 285 years old in northeast China, while accounting for soil characteristics (pH and total C, N and P concentrations).
PLoS One
January 2025
Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
Exophiala spinifera strain FM, a black yeast and melanized ascomycete, shows potential for oil biodesulfurization by utilizing dibenzothiophene (DBT) as its sole sulfur source. However, the specific pathway and enzymes involved in this process remain unclear due to limited genome sequencing and metabolic understanding of E. spinifera.
View Article and Find Full Text PDFJ Med Microbiol
January 2025
Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India.
Cold atmospheric plasma (CAP) has emerged as a promising technology for neutralizing microbes, including multidrug-resistant strains. This study investigates CAP's potential as an alternative to traditional antimicrobial drugs for microbial inactivation. In the era of increasing antimicrobial resistance, there is a persistent need for alternative antimicrobial strategies.
View Article and Find Full Text PDFBioengineered
December 2025
Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.
Gene editing is emerging as a powerful tool for introducing novel functionalities in mushrooms. While CRISPR/Cas9-induced double-strand breaks (DSBs) typically rely on non-homologous end joining (NHEJ) for gene disruption, precise insertion of heterologous DNA in mushrooms is less explored. Here, we evaluated the efficacy of inserting donor DNAs (8-1008 bp) with or without homologous arms at Cas9-gRNA RNP-induced DSBs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!