The decoction of the stem barks from Bowdichia virgilioides KUNTH is a folk remedy used to treat inflammatory disorders in Latin American and Brazil. In the present study, the wound healing activity of aqueous extract of the stem bark from B. virgilioides, called AEBv, was evaluated by the rate of healing by wound contraction and period of epithelization at different days post-wound using the wound excisional model. On day 9, the AEBv-treated animals exhibited significative reduction in the wound area when compared with controls. In wound infected with S. aureus, the AEBv significantly improved the wound contraction when compared to the saline-treated mice. The histological analysis showed that AEBv induced a collagen deposition, increase in the fibroblast count and few inflammatory cells than compared to saline-treated group. The expression of collagen type I was increased in the group treated with AEBv as indicated by immunohistochemical staining. In vitro, the AEBv was effective only against S. aureus but not against P. aeruginosa. Together, the results of this study demonstrate, for the first time, the healing and antimicrobiological effects of aqueous extract of the stem bark from B. virgilioides in the therapy of skin wounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/S0001-37652013005000049 | DOI Listing |
Heliyon
January 2025
Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
With the passage of time there is enormous development in the field of science and technology, however, human health remained the utmost concern. There are different strategies that helps us to treat various diseases but they have adverse reactions on our bodies. Nanobiotechnology is the advanced field consisting of new techniques and fabrication procedures for nanostructures for making drugs more effective against diseases in less time.
View Article and Find Full Text PDFHeliyon
January 2025
Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University of Jijel, 18000, Jijel, Algeria.
has been traditionally used in northeastern Algeria for treating gastrointestinal disorders, particularly ulcers. This study aimed to assess the gastroprotective, anti-inflammatory, and antioxidant properties of a crude hydroalcoholic extract derived from the leaves of , as well as its subsequent fractions. The gastroprotective effect was studied in an ethanol-induced ulcer model in mice.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Food Eng. Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210 Istanbul, Turkiye. Electronic address:
Liposomes are gaining interest in food and pharmaceutical applications due to their biocompatibility and non-toxicity. However, they suffer from low colloidal stability, leakage of encapsulated substances, and poor resistance to intestinal digestive conditions. To address these issues, propolis extract (PE) was encapsulated within a hybrid system combining liposomes and hydrogels.
View Article and Find Full Text PDFBioresour Technol
January 2025
University of Zagreb Faculty of Chemical Engineering and Technology, Marulićev trg 19, HR-10000 Zagreb, Croatia. Electronic address:
Efforts to reduce the impact of chemical processes on the environment are leading to a shift to enzymatic alternatives, with laccases standing out for their versatile substrate oxidation capabilities. This study addresses the improvement of biocatalytic reactions by deep eutectic solvents (DES), in particular DES-based aqueous two-phase systems (ATPS) for the extraction of biomolecules. Continuous laccase extraction from crude samples was achieved using a DES-based ATPS, which was first optimized in a batch extractor and later intensified in a microextractor.
View Article and Find Full Text PDFActa Trop
January 2025
Centre of Excellence for Pharmaceutical Sciences (Pharmacen(TM)), North-West University, Private Bag X6001, Potchefstroom 2520, South Africa. Electronic address:
Praziquantel is currently the only effective treatment for schistosomiasis, but several limitations underscore the need for new therapeutic agents. Recent promising in vitro results with Artemisia species and the success of A. annua and its active compound artemisinin in treating parasitic infections warrant the need for further studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!