Photoinduced charge separation processes of linear phenyleneethynylene derivatives (PEN) with different sequences of electron-withdrawing perfluorophenyl groups (A) and electron-donating phenyl groups (D) were investigated in an ionic liquid (IL), BmimTFSI, by picosecond time-resolved fluorescence (TRF) and transient absorption (TA) spectroscopies. Very rapid photoinduced charge separation within 10 ps in AADD was followed by the stabilization of the charge-transfer (CT) state by the solvation, while the excited states in ADAD and ADDA were ascribable to the locally excited (LE) state. Equilibrium between the LE and CT states was established for DAAD with time constants of forward and backward processes much faster than the solvation time. The relative population of the CT state increases with time owing to the dynamic stabilization of the CT state by the solvation. The elementary charge separation process, the increase in the CT population, and their relation to the solvation time were discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3pp50198a | DOI Listing |
Adv Clin Chem
January 2025
Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, United States. Electronic address:
Advancements in clinical chemistry have major implications in terms of public health, prompting many clinicians to seek out chemical information to aid in diagnoses and treatments. While mass spectrometry (MS) and hyphenated-MS techniques such as LC-MS or tandem MS/MS have long been the analytical methods of choice for many clinical applications, these methods routinely demonstrate difficulty in differentiating between isomeric forms in complex matrices. Consequently, ion mobility spectrometry (IM), which differentiates molecules on the basis of size, shape, and charge, has demonstrated unique advantages in the broad application of stand-alone IM and hyphenated IM instruments towards clinical challenges.
View Article and Find Full Text PDFDalton Trans
January 2025
Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
BiVO is considered as one of the important candidate materials for photoelectrochemical water splitting technology. However, the low efficiency of charge separation and poor kinetics of water oxidation limit its performance in PEC water splitting. In this work, a BiVO/MIL-53(FeNiCo) photoanode was constructed by a facile hydrothermal deposition method, exhibiting excellent water oxidation ability under AM 1.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States.
Ion atmospheres play a critical role in modulating the interactions between charged components in solutions. However, a detailed description of the nature of ion atmospheres remains elusive. Here, we use Kirkwood-Buff theory, an exact theory of solution mixtures, together with a series of local and bulk electroneutrality constraints to provide relationships between all the net ion-ion distributions in bulk electrolyte mixtures.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Centre for Plasma and Laser Engineering, Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 14 Fiszera Street, 80-231 Gdańsk, Poland.
Research on titanium nanotubes modified with metal sulfides, particularly bismuth sulfide (BiS), aims to create heterostructures that efficiently absorb sunlight and then separate photogenerated charge carriers, thereby enhancing the energy conversion efficiency. This study shows a key role of solvent used for sulfide and bismuth salt solutions used during successive ionic layer adsorption and reaction (SILAR) onto the morphology, structure, and photoresponse of the heterojunction where one element is represented by semitransparent titania nanotubes (gTiNT) and the second is BiS. Using 2-methoxyethanol and methanol during SILAR, results in remarkably photoactive 3D heterostructure and recorded photocurrents were 44 times higher compared to bare titania nanotubes.
View Article and Find Full Text PDFLoading with non-metal cocatalysts to regulate interfacial charge transfer and separation has become a prominent focus in current research. In this study, g-CN/CNT composites loaded with non-metallic cocatalysts were prepared through pyrolysis using urea and CNTs. Various characterization techniques, including transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), photoelectrochemical (PEC) analysis, fluorescence lifetime spectroscopy (TRPL), electron paramagnetic resonance spectroscopy (ESR), and photoluminescence (PL) spectroscopy, were employed to analyze the sample's microstructure, phase composition, elemental chemical states, and photoelectronic properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!