Imaging dynamic interactions between spliceosomal proteins and pre-mRNA in living cells.

Methods

Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal. Electronic address:

Published: February 2014

The ability to observe protein dynamics in living cells is critical for the mechanistic understanding of highly flexible biological processes such as pre-mRNA splicing by the spliceosome. Splicing relies on intricate RNA and protein networks that are repeatedly rearranged during spliceosome assembly. Here we describe a method based on fluorescence microscopy that has been used by our and other laboratories to study interaction of spliceosomal proteins with nascent pre-mRNA in living cells. The method involves co-expressing in mammalian cells the target pre-mRNA labeled with one color, and the spliceosomal protein tagged with another color. The diffusion coefficient of the protein as well as its association and dissociation rates with the pre-mRNA are estimated by fluorescence recovery after photobleaching (FRAP) or photoactivation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymeth.2013.08.010DOI Listing

Publication Analysis

Top Keywords

living cells
12
spliceosomal proteins
8
pre-mrna living
8
pre-mrna
5
imaging dynamic
4
dynamic interactions
4
interactions spliceosomal
4
proteins pre-mrna
4
cells
4
cells ability
4

Similar Publications

Spatially ordered recruitment of fast muscles in accordance with movement strengths in larval zebrafish.

Zoological Lett

January 2025

National Institutes of Natural Sciences, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan.

In vertebrates, skeletal muscle comprises fast and slow fibers. Slow and fast muscle cells in fish are spatially segregated; slow muscle cells are located only in a superficial region, and comprise a small fraction of the total muscle cell mass. Slow muscles support low-speed, low-force movements, while fast muscles are responsible for high-speed, high-force movements.

View Article and Find Full Text PDF

The cytoskeleton is a crucial determinant of mammalian cell structure and function, providing mechanical resilience, supporting the cell membrane and orchestrating essential processes such as cell division and motility. Because of its fundamental role in living cells, developing a reconstituted or artificial cytoskeleton is of major interest. Here we present an approach to construct an artificial cytoskeleton that imparts mechanical support and regulates membrane dynamics.

View Article and Find Full Text PDF

The protein interactome of p65/RELA, the most active subunit of the transcription factor (TF) NF-κB, has not been previously determined in living cells. Using p65-miniTurbo fusion proteins and biotin tagging, we identify >350 RELA interactors from untreated and IL-1α-stimulated cells, including many TFs (47% of all interactors) and >50 epigenetic regulators belonging to different classes of chromatin remodeling complexes. A comparison with the interactomes of two point mutants of p65 reveals that the interactions primarily require intact dimerization rather than DNA-binding properties.

View Article and Find Full Text PDF

The electrochemical biosensor has brought a paradigm shift in the field of sensing due to its fast response and easy operability. The performance of electrochemical sensors can be modified by coupling them with various metal oxides, nanomaterials, and nanocomposites. Hydrogen peroxide is a short-lived reactive oxygen species that plays a crucial role in various physiological and biological processes.

View Article and Find Full Text PDF

Agreement analysis and associated factors of SARC-F and SARC-CALF in screening of risk sarcopenia in people living with human immunodeficiency virus.

Clinics (Sao Paulo)

January 2025

Posgraduate Program in Food, Nutrition and Health, Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil. Electronic address:

Introduction: People Living with Human Immunodeficiency Virus (PLHIV) appear to be at a higher risk of developing sarcopenia. Various factors seem to influence the risk of sarcopenia, and its prevalence may differ depending on the screening tool used. This study aimed to (i) Screen the risk of sarcopenia in PLHIV using the SARC-F and SARCCalf and identify associated factors; (ii) Analyze the agreement between the instruments in PLHIV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!