Neurochemistry of myenteric plexus neurons of bank vole (Myodes glareolus) ileum.

Res Vet Sci

Department of Veterinary Medical Science, University of Bologna, Ozzano dell'Emilia, Bologna, Italy; Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.

Published: December 2013

The neurochemistry of enteric neurons differs among species of small laboratory rodents (guinea-pig, mouse, rat). In this study we characterized the phenotype of ileal myenteric plexus (MP) neuronal cells and fibers of the bank vole (Myodes glareolus), a common rodent living in Europe and in Northern Asia which is also employed in prion experimental transmission studies. Six neuronal markers were tested: choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), calbindin (CALB), calcitonin gene-related peptide (CGRP) and substance P (SP), along with HuC/D as a pan-neuronal marker. Neurons expressing ChAT- and nNOS-immunoreactivity (IR) were 36 ± 12% and 24 ± 5%, respectively. Those expressing CGRP-, SP- and CALB-IR were 3 ± 3%, 21 ± 5% and 6 ± 2%, respectively. Therefore, bank vole MPs differ consistently from murine MPs in neurons expressing CGRP-, SP- and CALB-IR. These data may contribute to define the prion susceptibility of neuron cell populations residing within ileal MPs from bank voles, along with their morpho-functional alterations following oral experimental prion challenge.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rvsc.2013.07.028DOI Listing

Publication Analysis

Top Keywords

bank vole
12
myenteric plexus
8
vole myodes
8
myodes glareolus
8
neurons expressing
8
expressing cgrp-
8
cgrp- sp-
8
sp- calb-ir
8
neurochemistry myenteric
4
neurons
4

Similar Publications

The brain interactome of a permissive prion replication substrate.

Neurobiol Dis

January 2025

Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada. Electronic address:

Bank voles are susceptible to prion strains from many different species, yet the molecular mechanisms underlying the ability of bank vole prion protein (BVPrP) to function as a universal prion acceptor remain unclear. Potential differences in molecular environments and protein interaction networks on the cell surface of brain cells may contribute to BVPrP's unusual behavior. To test this hypothesis, we generated knock-in mice that express physiological levels of BVPrP (M109 isoform) and employed mass spectrometry to compare the interactomes of mouse (Mo) PrP and BVPrP following mild in vivo crosslinking of brain tissue.

View Article and Find Full Text PDF

Most members of the genus Orthonairovirus, represented by Crimean-Congo hemorrhagic fever virus and Nairobi sheep disease virus, are tick-borne, and some have become a public health concern in recent years. Here, we report the isolation and genetic and biological characterization of a new orthonairovirus, designated as "Iwanai Valley virus" (IWVV), from Ixodes ovatus ticks in Hokkaido, Japan. The amino acid sequence of the viral nucleoprotein (NP) was found to be 34-45% identical to those of known orthonairoviruses.

View Article and Find Full Text PDF

AbstractMammalian herbivory represents a complex adaptation requiring evolutionary changes across all levels of biological organization, from molecules to morphology to behavior. Explaining the evolution of such complex traits represents a major challenge in biology, as it is simultaneously muddled and enlightened by a growing awareness of the crucial role of symbiotic associations in shaping organismal adaptations. The concept of hologenomic evolution includes the partnered unit of the holobiont, the host with its microbiome, as a selection unit that may undergo adaptation.

View Article and Find Full Text PDF

Gut microbial diversity influences the health and vitality of the host, yet it is itself affected by internal and external factors, including land-use. The impact of land-use practices on wild rodents' gut microbiomes remains understudied, despite their abundance and potential as reservoirs for zoonotic pathogens. We examined the bacterial and fungal gut microbiomes of bank voles (Myodes glareolus) and common voles (Microtus arvalis) across grassland and forest habitats with varying land-use intensities and types.

View Article and Find Full Text PDF

Insights into tail-belting by wild mice encourages fresh perspectives on physiological mechanisms that safeguard mammal tissues from freezing.

Sci Rep

November 2024

Department of Animal Physiology, Faculty of Biology, Institute of Experimental Zoology, University of Warsaw, 1 Miecznikowa Str, 02-096, Warsaw, Poland.

We investigated tail-belting (TB), the newly-discovered freeze avoidance behavior among wild rodents. When temperatures dropped to -6 °C, wild mice (Apodemus agrarius and Apodemus flavicollis) were observed curling their tails inward and positioning it on the back. A literature search suggested TB had never been documented, presumably because rodents, especially in the laboratory, are seldomly assayed under cold stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!