A novel polyethylene glycol mediated lipid nanoemulsion as drug delivery carrier for paclitaxel.

Nanomedicine

School of Pharmacy, Second Military Medical University, Shanghai, PR China; Tasly Pharmaceutical Group Co., Ltd, Tianjin, PR China. Electronic address:

Published: February 2014

Unlabelled: A novel polyethylene glycol 400 (PEG400) mediated lipid nanoemulsion as drug-delivery carrier for paclitaxel (PTX) was successfully developed. The formulation comprised a PEG400 solution of the drug (25mg/mL) that would be mixed with commercially 20% lipid emulsion to form PTX-loaded nanoemulsion (1mg/mL) prior to use. This two-vial formulation of PTX-loaded lipid nanoemulsion (TPLE) could significantly reduce extraction of reticuloendothelial system (RES) organs and increase tumor uptake, and exhibited more potent antitumor efficacy on bearing A2780 or Bcap-37 tumor nude mice compared to conventional PTX-loaded lipid nanoemulsion (CPLE). TPLE did not cause haematolysis and intravenous irritation response yet, and showed the same cytotoxicity against HeLa cells as Taxol®, and its LD50 was 2.7-fold higher than that of Taxol®, suggesting its good safety and druggability. In addition, TPLE displayed distinctly faster release of PTX, a greater proportion of PTX in phospholipids layer and a smaller share in oil phase than CPLE. From the Clinical Editor: This study demonstrates the feasibility and potential advantage of a novel PEG400-mediated two-vial formulation of lipid nanoemulsion as drug carrier for PTX in clinical application for the cancer therapy.

From The Clinical Editor: This team of investigators convincingly demonstrates the feasibility and potential advantage of a PEG400-mediated two-vial formulation of lipid nanoemulsion as drug carrier for PTX in cancer therapy, documenting superior safety and faster release of PTX compared to commercially available formulations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2013.07.018DOI Listing

Publication Analysis

Top Keywords

lipid nanoemulsion
24
nanoemulsion drug
12
two-vial formulation
12
novel polyethylene
8
polyethylene glycol
8
mediated lipid
8
carrier paclitaxel
8
ptx-loaded lipid
8
faster release
8
release ptx
8

Similar Publications

Various lipid and biopolymer-based nanocarriers have been developed to encapsulate food ingredients. The selection of nanocarrier type, preparation techniques, and loading methods should consider the compatibility of nutrient properties, nanocarrier composition, and product requirements. This review focuses on the loading methods for hydrophilic and hydrophobic substances, along with a detailed exploration of nanocarrier categorization, composition, and preparation methods.

View Article and Find Full Text PDF

A nanoemulsion was fabricated from Cananga odorata essential oil (EO) and stabilized by incorporation of Tween 80 using ultrasonication. The major constituents of the EO were benzyl benzoate, linalool, and phenylmethyl ester. Differing sonication amplitude (20-60%) and time (2-10 min) were assessed for effects on nanoemulsion droplet size and polydispersity index (PI).

View Article and Find Full Text PDF

Resins are complex mixtures of natural constituents containing non-volatile and volatile terpenes, in combination with gums and polyphenols, used since ancient times for their medicinal properties. Current research has evidenced their therapeutic value with a plethora of activities. The main limits of resins and their constituents for their clinical use are low water solubility, poor stability and bioavailability.

View Article and Find Full Text PDF

The Potential Application of Nanocarriers in Delivering Topical Antioxidants.

Pharmaceuticals (Basel)

January 2025

Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia.

The imbalance in the production of reactive oxygen species (ROS) with endogenous antioxidant capacity leads to oxidative stress, which drives many disorders, especially in the skin. In such conditions, supplementing exogenous antioxidants may help the body prevent the negative effect of ROS. However, the skin, as the outermost barrier of the body, provides a perfect barricade, making the antioxidant delivery complicated.

View Article and Find Full Text PDF

Background: Intravenous nanoemulsions (NEs) are gaining attention as potential delivery systems for poorly water-soluble substances like cannabidiol (CBD). This study aimed to develop novel NEs based on CBD-enriched hemp oils and evaluate their physiochemical properties.

Methods: The stability of hemp oils enriched with various concentrations of CBD (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!