Inflammatory pathways in spondyloarthritis.

Mol Immunol

Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Tytgat Institute for Liver and Intestinal Research, Academic Medical Center/University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands. Electronic address:

Published: January 2014

Spondyloarthritis is the second most common form of chronic inflammatory arthritis and a unique hallmark of the disease is pathologic new bone formation. Several cytokine pathways have been genetically associated with ankylosing spondylitis (AS), the prototypic subtype of SpA, and additional evidence from human and animal studies support a role of these pathways in the disease. TNF has a key role in SpA as blockade significantly reduces inflammation and destruction, however the treatment does not halt new bone formation. New insights into the TNF pathway were recently obtained from an animal model specifically overexpressing the transmembrane form of TNF. This model leads to axial and peripheral new bone formation which is not seen in soluble TNF overexpression models, indicating different pathogenic roles of soluble and transmembrane TNF in arthritis development. Besides TNF, the IL-23/IL-17 axis is emerging as an important inflammatory pathway in SpA, as a SNP in the IL-23R locus has been associated with developing AS, mice overexpressing IL-23 develop SpA-like features and IL-17 blockade has been shown to be efficacious for AS patients in a phase II trial. In this review, we focus on the cytokine pathways that have recently been genetically associated with SpA, i.e. TNF, IL-1, IL-6 and IL-23/IL-17. We review the current genetic, experimental and human in vivo data available and discuss how these different pathways are involved in the pathophysiology of SpA. Additionally, we discuss how these pathways relate to the pathogenic new bone formation in SpA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molimm.2013.07.016DOI Listing

Publication Analysis

Top Keywords

bone formation
16
cytokine pathways
8
pathways genetically
8
genetically associated
8
discuss pathways
8
tnf
7
spa
6
pathways
5
inflammatory pathways
4
pathways spondyloarthritis
4

Similar Publications

Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery.

Tissue Eng Regen Med

January 2025

Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, 172 Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.

Background: Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.

Methods: Thirty patients (17 male, 13 female; mean age 55.

View Article and Find Full Text PDF

Background: Currently, the pathophysiology of new bone formation in radiographic axial spondyloarthritis (r-axSpA) remains unclear. Cellular elements and their secreted bone turnover markers might be one of the underlying mechanisms that drive the new bone formation. Our study aimed to investigate the role of bone turnover markers in r-axSpA patients with fatty lesions.

View Article and Find Full Text PDF

Ultrasonographic examination of the maturational effect of maternal vitamin D use on fetal clavicle bone development.

BMC Med Imaging

January 2025

Faculty of Medicine, Department of Obstetrics and Gynecology, Erciyes University, Yenidogan Neighborhood, Turhan Baytop Street No:1, Kayseri, 38280, Turkey.

Aim: This study aimed to evaluate the effect of maternal vitamin D use during intrauterine life on fetal bone development using ultrasonographic image processing techniques.

Materials And Methods: We evaluated 52 pregnant women receiving vitamin D supplementation and 50 who refused vitamin D supplementation. Ultrasonographic imaging was performed on the fetal clavicle at 37-40 weeks of gestation.

View Article and Find Full Text PDF

Bioactive materials from berberine-treated human bone marrow mesenchymal stem cells accelerate tooth extraction socket healing through the jaw vascular unit.

Sci China Life Sci

January 2025

Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China.

Delayed tooth extraction socket (TES) healing can cause failure of subsequent oral implantation and increase socioeconomic burden on patients. Excessive amounts of M1 macrophages, apoptotic neutrophils (ANs), and neutrophil extracellular traps (NETs) impair alveolar bone regeneration during TES healing. In the present study, we first discovered that conditioned medium (CM) collected from berberine-treated human bone marrow mesenchymal stem cells (BBR-HB-CM) accelerated TES healing.

View Article and Find Full Text PDF

Perfluorinated compounds (PFAS) are well recognized toxic pollutants for humans, but if their effect is equally harmful for healthy and fragile people is unknown. Addressing this question represents a need for ensuring global health and wellbeing to all individuals in a world facing the progressive increase of aging and aging related diseases. This study aimed to evaluate the impact of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexanoic acid (PFHxA) exposure on development and skeletal phenotype using the osteogenesis imperfecta (OI) zebrafish model Chihuahua (Chi/+), carrying a dominant glycine substitution in the α1 chain of collagen I and their wild-type (WT) littermates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!