The advent of a new pseudoephedrine product to combat methamphetamine abuse.

Am J Drug Alcohol Abuse

Acura Pharmaceutical Technologies, Inc., Culver, IN 46511, USA.

Published: September 2013

Background: The personal and societal effects of methamphetamine abuse are well documented. The ease of accessibility to methamphetamine and the quality of the "high" it produces makes the drug highly desired by its abusers. Over time, many methamphetamine users will also become methamphetamine cooks, where pseudoephedrine in over-the-counter cold products is converted to methamphetamine through a simple, albeit extremely dangerous, process. New laws limiting access to these products have had limited success. No existing commercial pseudoephedrine products offer significant impediments to slow or limit the extraction and conversion of pseudoephedrine in clandestine methamphetamine laboratories.

Objective And Methods: A new pseudoephedrine 30 mg tablet product using Impede technology (Nexafed®) to deter methamphetamine production has recently been introduced into the marketplace. Using methods designed to mimic clandestine laboratory processes, the ability of this product to disrupt extraction and conversion of pseudoephedrine to methamphetamine yet provide therapeutic effectiveness was evaluated.

Results: Impede™ technology tablets limited the extraction and/or conversion of pseudoephedrine to methamphetamine when compared to a commercially marketed pseudoephedrine product (Sudafed®). Nexafed® tablets were also shown to be bioequivalent to the same control product, thus ensuring therapeutic equivalence.

Conclusions: With the advent of new pseudoephedrine products in the marketplace with features to limit the extraction and conversion of pseudoephedrine to methamphetamine, new tools are now available to minimize the clandestine manufacture of the drug and potentially limit its social impact.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3793278PMC
http://dx.doi.org/10.3109/00952990.2013.821476DOI Listing

Publication Analysis

Top Keywords

conversion pseudoephedrine
16
extraction conversion
12
pseudoephedrine methamphetamine
12
methamphetamine
11
pseudoephedrine
9
advent pseudoephedrine
8
pseudoephedrine product
8
methamphetamine abuse
8
pseudoephedrine products
8
limit extraction
8

Similar Publications

Production of Phenylacetylcarbinol via Biotransformation Using the Co-Culture of TISTR 5306 and TISTR 5606 as the Biocatalyst.

J Fungi (Basel)

September 2023

Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.

Phenylacetylcarbinol (PAC) is a precursor for the synthesis of several pharmaceuticals, including ephedrine, pseudoephedrine, and norephedrine. PAC is commonly produced through biotransformation using microbial pyruvate decarboxylase (PDC) in the form of frozen-thawed whole cells. However, the lack of microorganisms capable of high PDC activity is the main factor in the production of PAC.

View Article and Find Full Text PDF

Valorization of rice straw, sugarcane bagasse and sweet sorghum bagasse for the production of bioethanol and phenylacetylcarbinol.

Sci Rep

January 2023

Cluster of Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.

Open burning of agricultural residues causes numerous complications including particulate matter pollution in the air, soil degradation, global warming and many more. Since they possess bio-conversion potential, agro-industrial residues including sugarcane bagasse (SCB), rice straw (RS), corncob (CC) and sweet sorghum bagasse (SSB) were chosen for the study. Yeast strains, Candida tropicalis, C.

View Article and Find Full Text PDF

Methyl 3-oxo-2-phenylbutyrate (MAPA) is a recently circulating precursor of phenylacetone (P2P), a precursor of amphetamine and methamphetamine. MAPA has a hybrid chemical structure of acetoacetic acid ester and P2P. Acetoacetic acid ester is de-esterified and decarboxylated to give the ketone by heating under acidic conditions; therefore, MAPA is presumed to be converted to P2P by such treatment.

View Article and Find Full Text PDF

Phenylalkylamines, such as the plant compounds ephedrine and pseudoephedrine and the animal neurotransmitters dopamine and adrenaline, compose a large class of natural and synthetic molecules with important physiological functions and pharmaceutically valuable bioactivities. The final steps of ephedrine and pseudoephedrine biosynthesis in members of the plant genus involve -methylation of norephedrine and norpseudoephedrine, respectively. Here, using a plant transcriptome screen, we report the isolation and characterization of an -methyltransferase (NMT) from able to catalyze the formation of (pseudo)ephedrine and other naturally occurring phenylalkylamines, including -methylcathinone and -methyl(pseudo)ephedrine.

View Article and Find Full Text PDF

Efficiency of extraction and conversion of pseudoephedrine to methamphetamine from tamper-resistant and non-tamper-resistant formulations.

J Pharm Biomed Anal

July 2018

Johnson & Johnson Consumer, Inc, 7050 Camp Hill Road, Fort Washington, PA 19034, USA. Electronic address:

Clandestine chemists have demonstrated an ability to convert commercially available pseudoephedrine formulations to methamphetamine. Some of these formulations have properties that manufacturers claim limit or block the extraction of pseudoephedrine and its direct conversion to methamphetamine. In this study, 3 commercially available pseudoephedrine formulations were evaluated for ease of extraction and conversion to methamphetamine using a common chemistry technique called the one-pot method that is frequently employed by clandestine chemists.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!